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I. Introduction 

Connectionist networks in which information is stored in weights on 
connections between simple processing units have attracted considerable 
interest in cognitive science (e.g., Rumelhart, McClelland, & the PDP 
Research Group, 1986; McClelland, Rumelhart, & the PDP Research 
Group, 1986). Much of the interest centers around two characteristics of 
these networks. First, the weights on connections between units need not 
be prewired by the model builder but rather may be established through 
training in which items to be learned are presented repeatedly to the net- 
work and the connection weights are adjusted in small increments accord- 
ing to a learning algorithm (e.g., Ackley, Hinton, & Sejnowski, 1985; 
Rumelhart, Hinton, & Williams, 1986; Hinton & Sejnowski, 1986). Sec- 
ond, the networks may represent information in a distributed fashion. 
That is, the representation of an item may be spread, or distributed, 
across many different processing units and connections, and each unit 
and connection may be involved in representing many different items. 

Distributed representations established through the application of 
learning algorithms have several properties that are claimed to be desir- 
able from the standpoint of modeling human cognition (e.g., Hinton, 
McClelland, & Rumelhart, 1986; McClelland, Rumelhart, & Hinton, 
1986; but see Prince & Pinker, 1988; Fodor & Pylyshyn, 1988; Lachter & 
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Bever, 1988). These properties include content-addressable memory and 
so-called automatic generalization, in which a network trained on a set of 
items responds correctly (i.e., generalizes) to other untrained items 
within the same domain. The present chapter focuses on another, less 
desirable, property of distributed representations: New learning may in- 
terfere catastrophically with old learning when networks are trained se- 
quentially. 

11. Sequential Learning and Interference 

Typically, connectionist networks are trained by repeatedly presenting 
a single set of training items that includes all of the items to be learned, 
or at least incorporates all of the regularities to be captured by the net- 
work. This training method, which we will refer to as concurrent training, 
may in some circumstances accurately reflect the way in which a human 
learner encounters material to be learned. Often, however, human learn- 
ing is more sequential. For example, children learning basic arithmetic 
facts such as 4 + 2 = 6 are usually trained on addition facts before multi- 
plication facts, and within each operation they usually encounter “small” 
facts such as 2 + 3 before large facts such as 8 + 9. Autobiographical 
memories provide an especially clear example of sequential learning: 
Memories for one’s life experiences are obviously acquired sequentially 
over a lifetime. 

Therefore, if connectionist networks are to be used to model human 
learning, then the networks must be able to learn sequentially. However, 
when many networks are trained sequentially, the problem of interfer- 
ence arises: Training on a new set of items may drastically disrupt perfor- 
mance on previously learned items. 

Disruption of old knowledge by new learning is a recognized feature of 
connectionist models with distributed representations (e.g., Carpenter & 
Grossberg, 1986; Hinton et al., 1986; Hinton & Plaut, 1987; Ratcliff, in 
press; Sutton, 1986). However, the interference is sometimes described 
as if it were mild and/or readily avoided (see, e.g., Hinton e f  a/. ,  1986. 
pp. 81-82). Perhaps for this reason, the interference phenomenon has re- 
ceived surprisingly little attention, and its implications for connectionist 
modeling of human cognition have not been systematically explored, 

In this chapter we illustrate the phenomenon and assess its implica- 
tions. After describing briefly the basic properties of the networks used 
in our modeling, we present two examples of catastrophic interference 
occumng under sequential learning conditions. We then explore the gen- 
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erality of the interference phenomenon, consider why it occurs, and dis- 
cuss its ramifications. 

111. Network Architecture and Learning Procedures 

A. NETWORK ARCHITECTURE 

The modeling reported in this chapter was carried out with layered 
feed-forward networks of deterministic units that could take on activation 
values ranging continuously from 0 (fully off) to 1.0 (fully on). Each of 
our networks included a layer of input units, a layer of output units, and 
(in most instances) an intervening layer of hidden units. All input units 
were connected to all hidden units, and all hidden units were connected 
to all output units. Connections between units had weights that could be 
positive or  negative. Figure I presents for purposes of illustration a very 
simple “2-1-2” network with two input units (A and B), one hidden unit 
(C), and two output units (D and E). 

When an input is presented to a network of this sort (by setting each 
input unit to a particular activation state), the input units send signals to 
the hidden units, thereby activating the hidden units to varying degrees. 
The hidden units then send signals to  the output units, which in turn adopt 
activation states on the basis of these signals. Thus, activation is propa- 
gated forward from the input units to the hidden units and then to  the 
output units. In this way the network maps a pattern of activation across 
the input units onto a pattern of activation across the output units. 

The signal sent from a unit in one layer to a unit in the next layer is the 

-0.86 

Fig. 1. A simple 2-1-2 network with two input units (A and B), one hidden unit ( C ) ,  
and two output units (D and E). 
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product of the activation of the sending unit and the weight on the connec- 
tion from the sending unit to the receiving unit. Suppose, for example, 
that the pattern [ 1 01 (i.e., unit A on and unit B oft) were presented to the 
2-1-2 network in Fig. 1. The hidden unit C would receive a signal of I .93 
from unit A (i.e., 1, the activation of unit A, multiplied by 1.93, the weight 
on the A-C connection). The signal to unit C from unit B would be 0, 
because unit B has an activation of 0. 

In addition to receiving signals from units in preceding layers, each 
hidden unit and output unit has a bias (indicated in Fig. 1 by the number 
above each unit) they may be positive or negative. Biases function pre- 
cisely like connection weights, and in fact a unit’s bias may be thought 
of as the weight on a connection to that unit from a unit that is always 
on. 

The activation level of a unit is determined by summing the signals it 
receives as input, and transforming the sum nonlinearly by means of the 
logistic function a = 1 4 1  + F‘), where a is the activation state of the 
unit, and I is the sum of the unit’s inputs. 

The logistic activation function has several interesting properties. If a 
unit’s inputs sum to 0, the unit will take on an activation value of .5.  
Predominantly negative inputs drive the activation value below .5 ,  and 
predominantly positive inputs raise the activation above .5.  The function 
approaches an asymptote of 0 as inputs become increasingly negative, 
and reaches an asymptote at I .O as the inputs become increasingly posi- 
tive. Thus, units can take on activation values ranging continuously from 
0 to I .O. In the case of the pattern [ I  01 presented to the 2-1-2 network, 
the total input to the hidden unit would be 1.82 (i.e., the sum of 1.93, the 
input from unit A; 0, the input from unit B; and -0.11, the unit’s bias), 
resulting in an activation level of 36 .  This level of activation in the hidden 
unit would in turn lead to an activation level of .71 for output unit D, and 
.29 for unit E. 

B. TRAINING PROCEDURE 

Training a connectionist network on a set of items to be learned in- 
volves a series of learning trials. On each trial the items in the training 
set are presented to the network, and the connection weights are altered 
in accordance with a learning algorithm. The goal of the training is to 
configure the weights in such a way that the network will map each input 
pattern in the training set onto the desired output pattern. The weights 
are adjusted in small steps, so that over learning trials the outputs pro- 
duced by the network gradually come to approximate the target outputs 
more and more closely. 
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In the modeling reported in this chapter we used the back-propagation 
learning algorithm (Rumelhart, Hinton, & Williams, 1986). On each learn- 
ing trial the items in the training set were presented in a random order. 
For each item the input pattern was presented, and the network was al- 
lowed to generate an output in the manner described in the preceding 
section. The network’s output was then compared to the target output, 
and on the basis of this comparison the connection weights were altered. 

In concurrent training all of the items to be learned were included in a 
single training set, which was presented repeatedly over a series of learn- 
ing trials until good performance was achieved. In sequential training, 
however, the network was first trained on one set of items and then on a 
second set, with the aim of assessing retention of the originally trained 
items during learning of the new items. 

C. THE LEARNING ALGORITHM 

The back-propagation learning algorithm aims to minimize the squared 
difference between target activation levels for output units and the activa- 
tion levels generated by the network. After the network generates an out- 
put in response to an input pattern, an error signal d is computed for each 
output unit as 

d = (f - a)(a)(l - a)  

where a is the activation level of the output unit, and t is the target activa- 
tion level. The term (a)( 1 - a) is the derivative of the logistic function at 
the point corresponding to the activation of the output unit. Following 
Rumelhart, Hinton, and Williams (1986), we computed error signals using 
.9 rather than 1.0 as  the target activation level for a unit that should be 
on, and . I  rather than 0 as the target level for a unit that should be off. 
(The use of these target values improves the performance of the learning 
algorithm under certain circumstances. See pp. 141-142 and especially 
footnote 3, for further discussion of this point.) 

Suppose, for example, that we want the 2-1-2 network to  generate the 
output pattern [ l  01 (i.e., unit D on, unit E off) in response to the input 
[l 01. As we have seen, the network in Fig. 1 generates the output [.71 
.29] when presented with this input pattern. Thus, the error signal for unit 
D would be computed as (.9 - .71)(.71)(1 - .71), or .039. For unit E, the 
error signal would be - .039. 

The error signals for the output units are used to compute error signals 
for the hidden units. Specifically, the error signal for a hidden unit is given 
by 
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d; = a;(l - a;) ZJW,dj 

where wji is the weight on the connection to output un i t j  from hidden unit 
i .  The term a;( I - ai) is the derivative of the logistic function at the point 
corresponding to the activation of the hidden unit, and the other term in 
the equation is the sum across all output units of the product of the output 
unit's error signal and the weight on the connection to the output unit 
from the hidden unit. Carrying out this computation for the hidden unit 
in the 2-1-2 example yields an error signal of .019 for this unit. 

Finally, the error signals are used to compute changes in connection 
weights: 

AW, = ra'p, 

where r is a constant that is referred to as the learning rate parameter. 
The learning rate determines the size of the weight adjustments during 
learning. With a high learning rate, weights may be charged by a relatively 
large amount at  each weight adjustment, whereas with low learning rates 
the weights are changed in smaller steps. 

Rumelhart, Hinton, and Williams (1986) note that the performance of 
the learning algorithm is often improved by including momentum in the 
calculation of weight changes. Momentum is computed as a proportion 
of the weight change made for the connection on the immediately preced- 
ing cycle of weight adjustments. Thus, weight changes are calculated as 
follows: 

Aw,[nI = rdp, + rnAwji[n - 11 

where Awji[x] indicates the weight change for weight adjustment cycle x, 
and m is a constant referred to as the momentum parameter. With the 
inclusion of momentum, the change in a connection's weight tends to be 
similar to prior weight changes for that connection. In the simulations we 
report, a momentum parameter of .9 was used. 

Consider, for example, the connection from the hidden unit C to output 
unit D in the 2-1-2 network. Assuming that the learning rate is set at . 5 ,  
and that the weight change for the connection was .071 on the preceding 
cycle of weight adjustments, the weight change for the connection would 
be [(.5)(.039)(.86)] + [(.9)(.071)], o r  .081. Thus, the weight on the connec- 
tion would be changed by the learning algorithm from +2.07 to +2.15. 

The back-propagation learning algorithm has one additional property 
that requires discussion. If a network begins with equal weights on all 
connections (e.g., weights of 01, then for any given input to the network 
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every hidden unit will have the same activation level and the same error 
signal. Therefore, the weight change computed for the connection from a 
hidden unit to any given output unit will be the same for all hidden units, 
and the weight change for the connection from an input unit to a hidden 
unit will be the same for all hidden units. As a result, the hidden units 
will fail to differentiate over learning trials. That is, weight configurations 
that differ from hidden unit to hidden unit will not develop; rather, every 
hidden unit will have the same configuration of weights on connections 
with input and output units. Because learning in most situations requires 
differentiation of hidden units, this constitutes a problem. However, the 
problem is easily resolved by initializing connection weights to small ran- 
dom values (Rumelhart, Hinton, & Williams, 1986). In the modeling dis- 
cussed in this chapter the connection weights were initially set to values 
sampled randomly from a uniform distribution ranging from - .3  to + .3. 

We turn now to our first example of catastrophic interference occurring 
under sequential learning conditions. 

IV. Arithmetic Facts 

Figure 2 depicts a three-layer network for learning basic arithmetic 
facts, such as  2 + 3 = 5. The network included 28 input units, 50 hidden 
units, and 24 output units. We assume that encoding of a problem (e.g., 
6 + I )  corresponds to the creation of a pattern of activation across the 
input units, as illustrated in the figure. (Shading indicates level of activa- 
tion: the darker the shading, the higher the activation.) The first 12 input 
units represent the first number in the problem (e.g., 6), the next 12 units 
represent the second number (e.g., I ) ,  and the final 4 units represent the 
arithmetic operation (e.g., addition). Similarly, the first 12 output units 
represent the tens digit of the answer, and the remaining 12 units repre- 
sent the ones digit. 

We used a “coarse-coded’’ representation for numbers, as  shown in 
Table I. Each of the numbers 0-9 was represented by activation of three 
units, and for numbers close in magnitude some of the same units were 
activated. Thus, the network represents numbers and arithmetic facts in 
a distributed fashion. The individual units in the network do  not represent 
numbers, and individual connections in the network do not represent rela- 
tions between numbers. Rather, numbers are represented by patterns of 
activation across several units, and each unit is involved in representing 
several different numbers. Further, an arithmetic fact such as 6 + 1 = 7 
cannot be localized to a small set of interconnected units that represent 
only that fact. Rather, the representation of a fact is distributed across 
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Fig. 2. The arithmetic network. 

TABLE I 

COARSE-CODED REPRESENTATIONS FOR 
NUMBERS IN THE ARITHMETIC NETWORK 

Unit 
~ ~~~~~~ 

Number 1 2 3 4 5 6 7 8 9 10 11 12 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I I I 0 0 0 0 0 0 0 0  0 
0 1 1 1 0 0 0 0 0 0  0 0 
0 0 1 1 1 0 0 0 0 0  0 0 
0 0 0 1 1  1 0 0 0  0 0 0 
0 0 0 0 1 1 I 0 0 0 0  0 
0 0 0 0 0 1 1  1 0 0  0 0 
0 0 0 0 0 0 1 1 I 0 0  0 
0 0 0 0 0 0 0 1 1  10 0 
0 0 0 0 0 0 0 0 1  1 1 0 
0 0 0 0 0 0 0 0 0 1  1 1 
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many different connections between many different units, and each unit 
and connection is involved in representing many different facts. 

When the network is trained concurrently on the 200 single-digit addi- 
tion and multiplication problems (i.e., 0 + 0 through 9 + 9, and 0 x 0 
through 9 x 91, excellent performance is readily achieved. As we have 
noted, however, concurrent training does not conform well to the way in 
which children learn arithmetic facts. Hence, we decided to explore the 
performance of the network with sequential training. In the simulation we 
will discuss, the network was first trained on the ones addition facts, and 
then on the twos facts. In this simulation, and in fact in all of the simula- 
tions we report in this chapter, two independent runs were carried out, 
and results were averaged over the two runs. In no instance were there 
substantial differences in network performance between runs. 

A. TRAINING ON THE ONES ADDITION FACTS 

A training set consisting of the 17 single-digit ones problems (i.e., I + 
I through 9 + 1, and I + 2 through 1 + 9) was presented repeatedly until 
the network responded correctly to all of these problems. The learning 
rate parameter was set to .25, which is conservative in the sense of ensur- 
ing that weight changes will be relatively small. 

Because there are significant questions concerning how the perfor- 
mance of connectionist models should be evaluated, we considered four 
different performance measures. An error measure was defined as the 
squared difference between the target activation level for an output unit 
and the activation level produced by the network, averaged over output 
units and over training problems. Figure 3A plots error across learning 
trials; each data point in the figure is an average over five consecutive 
trials. (A learning trial consisted of one presentation of each of the 17 
training problems.) It is apparent that error declines steadily over train- 
ing, reflecting the fact that the network’s outputs come to approximate 
the target outputs more and more closely. 

The other three performance measures concern the percentage of prob- 
lems the network answers correctly. According to a stringent within . I  
criterion a response was considered correct only if all of the output units 
had activation levels within . I  of the target activation levels. A less strin- 
gent criterion required each output unit to be closer to the target odoff 
state than to the alternative state. In other words, all units that were sup- 
posed to be on were required to have activation levels of greater than .5,  
and all units that were supposed to be off were required to have activation 
levels of less than .5 .  We refer to this criterion as the right side of .5 
criterion. Figure 3B presents the performance of the network according 
to the right side of .5 criterion. 
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Finally, network performance was also assessed with a best mutch cri- 
terion. By this relatively lax criterion a response was counted correct if 
it was closer to the correct response than to any of the alternative re- 
sponses; closeness was defined by the error measure. For example, a 
response to the problem 4 + 1 was counted correct by the best match 
criterion if the network’s output more closely matched the output pattern 
for the number 5 than the pattern for any other answer to a single-digit 
addition problem. Figure 3C shows the network’s performance according 
to the best match criterion. By any of the performance measures the net- 
work performed very well after about 15-35 learning trials. 

Figure 4 illustrates how the network’s output changes over training. 
Panel A shows the target output pattern for the problem 6 + 1; this pat- 
tern represents the number 7. Each bar on the graph represents the acti- 
vation level of one of the output units. For the problem 6 + 1 output 
units 1-3 should be on, representing zero tens. Specifically, the desired 
activation level for these units is .9. Units 20-22 should also be on, repre- 
senting seven ones. Finally, the other output units should be off; that is. 
these units should have activation levels of about . l .  

Panel B shows the network’s output for the problem 6 + 1 prior to 
training. Panel C shows the output after five learning trials on the ones 
problems, and panel D shows performance at the completion of training 
on these problems. It is apparent that over learning trials the network’s 
output comes to approximate the correct output more and more closely. 

B. TRAINING ON THE Twos ADDITION FACTS 

Training o n  the ones problems continued until all 17 problems were 
correct by the stringent within . l  criterion. The network was then trained 
on the 17 twos facts (i.e.. 2 + 1 through 2 + 9, and 1 + 2 through 9 + 
2), much as a child might learn these facts after learning the ones facts. 
(Note that 2 + 1 and 1 + 2 were included in both the ones training set 
and the twos training set.) 

Following each learning trial on the twos problems, the network was 
tested on both the ones and two facts. Because no weight adjustments 
were made during the test trials, the testing in no way affected the net- 
work’s performance on any of the facts. In reporting results for ones and 
twos problems during training on the twos, we considered 2 + 1 and I 

Fig. 3. A, Error as a function of number of learning trials during training on the ones 
addition facts. B ,  Performance of the arithmetic network according to the right side of .5 
criterion during training on the ones addition facts. C, Performance of the arithmetic net- 
work according to the best match criterion during training on the ones addition facts. 
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Fig. 4. Output of the arithmetic network for the problem 6 + 1 as a function of amount 
of training. A, Target output pattern; B, Network output prior to training; C, Network out- 
put after five learning trials on the ones addition facts; D, Network output at the completion 
of ones training. 

+ 2 to be twos problems, because these problems were included in the 
twos training set. Thus, the results reported for the ones problems come 
from the 15 problems that were not trained during learning of the twos. 

Like the ones facts, the twos facts were readily learned. However, 
once the network had learned the twos facts it no longer responded cor- 
rectly to the ones problems. Figure 5A shows the error measure for the 
ones and twos facts during training on the twos. It is evident that training 
on the twos facts drastically increases error on the ones facts. In fact, the 
average squared error for the ones problems increases by more than an 
order of magnitude after a single learning trial on the twos facts, from 
.0015 to .0453. 

Performance on the ones facts is also drastically disrupted when as- 
sessed with the right side of .5 and within . I  criteria, as illustrated for the 

Fig. 5 .  A, Error measure for ones and twos addition facts as a function of number of 
learning trials on the twos facts. B, Performance of the arithmetic network on the ones and 
twos addition facts as a function of number of learning trials on the twos facts, assessed 
according to the right side of .5 criterion. C, Performance of the arithmetic network on the 
ones and twos addition facts as a function of number of learning trials on the twos facts, 
assessed according to the best match criterion. 
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former criterion in Fig. 5B. Finally, Figure 5C presents results tabulated 
according to the best match criterion. Even by this lax criterion, degrada- 
tion of the ones learning is quite severe: performance on the ones de- 
creases from 100% to 57% correct after a single learning trial on the twos 
facts, and to 30% correct after two trials. 

The poor best match performance is particularly noteworthy, because 
it is something of an open question how an output pattern generated by 
a network such as our arithmetic network would be transformed into an 
overt response. It is conceivable that even if learning the twos facts sub- 
stantially increased the squared error for the ones facts, or even led to 
outputs in which some units were on the wrong side of .5.  the outputs 
might still be close enough to the target outputs to allow a correct re- 
sponse to be generated. However, it is difficult to argue that an output 
pattern that resembles the pattern for an incorrect number more closely 
than the pattern for the correct number could provide the basis for a cor- 
rect response. 

I .  Errors 

The network’s errors on the ones facts after training on the twos facts 
take an interesting form. After training on the twos facts the network 
responds to the vast majority of the ones problems as if they were twos 
problems; for example, 5 + 1 is 7, and 6 + 1 is 8. Figure 6 shows the 

Fig. 6. Comparison of  network output for the problem 6 + I at the completion of ones 
training (stippled bars). and after one learning trial on the twos facts (solid bars). 
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output for the problem 6 + I at the completion of training on the ones 
facts (stippled bars), and then after one learning trial on the twos facts 
(solid bars). It is apparent that after a single trial on the twos facts the 
network’s response to 6 + 1 is no longer correct. The activation level for 
two of the output units has changed dramatically, with the result that the 
new output closely resembles the pattern for the number 8. 

2 .  Performance on 2 + 1 and 1 + 2 

The problems 2 + 1 and 1 + 2 were included in both the ones training 
set and the twos training set. At the completion of ones training, then, 2 
+ 1 and 1 + 2 were correct by the stringent within . l  criterion, and train- 
ing on these problems continued uninterrupted during learning of the twos 
facts. Thus, it seems patently obvious that excellent performance on 2 + 
1 and I + 2 would be maintained during training on the twos facts. 

Remarkably, however, this was not the case. Performance on 2 + I 
and 1 + 2 showed brief but dramatic disruption during the first few learn- 
ing trials on the twos facts. After a single learning trial on the twos facts 
the average squared error for 2 + 1 and 1 + 2 increased from 0021 to 
.0363, and both facts were incorrect not only by the within . I  and right 
side of .5 criteria, but even by the best match criterion. Additional train- 
ing quickly reestablished correct responses to both problems according 
to the best match and right side of .5 criteria (after the second twos learn- 
ing trial in one run of the simulation, and after the third trial in the other 
run). However, the facts were not correct by the within .1 criterion 
(which both of the facts met at the completion of training on the ones) 
until after about the eighth trial. 

C. IMPLICATIONS OF THE ARITHMETIC RESULTS 
In simulating sequential learning of arithmetic facts, we found that the 

learning of new facts profoundly disrupted performance on previously 
learned facts. To the extent that one is interested in using connectionist 
networks to model human learning and memory, this sort of disruption 
would appear to be a significant problem. 

It is certainly possible that the sequential training used in our simula- 
tion was too sequential; children do not fully learn new facts without 
practicing previously learned facts. However, after even a single learning 
trial on the twos problems, performance on the ones problems was sub- 
stantially disrupted. Furthermore, training on the twos facts briefly but 
drastically impaired performance on 2 + 1 and 1 + 2, even though train- 
ing on these facts continued during learning of the twos. It seems unlikely 
that human learners, after having learned the facts 2 + I = 3 and 1 + 2 
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= 3 in the context of the other ones problems, would experience serious 
difficulty with these facts when they were studied in the context of the 
twos facts. Thus, the network’s performance for 2 + 1 and 1 + 2 departs 
in a particularly striking fashion from the performance expected of human 
learners. 

We should make clear that the mere occurrence of interference in con- 
nectionist models is not a problem. Disruption of old knowledge by new 
learning is seen not only in connectionist networks but also in humans; 
the phenomenon of retroactive interference is well documented (e.g., 
Barnes & Underwood, 1959). Accordingly, interference comparable in 
severity to that observed in human learners would be a desirable feature 
in connectionist networks; such interference would suggest that the net- 
works can capture the sorts of limitations that people encounter as they 
learn and remember. 

Unfortunately, the results we have reported cannot readily be charac- 
terized as retroactive interference effects of a sort we would expect to 
observe in human learners. In the first place, it is by no means a foregone 
conclusion that retroactive interference occurs at all in the learning of 
arithmetic facts. It is conceivable that in some circumstances, especially 
those involving acquisition of knowledge in highly structured domains, 
the learning of new material would have no effect, or even a facilitating 
effect, on previously learned material. Even if it were assumed that hu- 
man learners were subject to retroactive interference in acquisition of 
arithmetic facts, the interference we observed in our network would ap- 
pear to be much more severe than one would expect from a human 
learner. To put it somewhat flippantly, the magnitude of the observed 
interference makes it seem more like retrograde amnesia than retroactive 
interference. 

V. Retroactive Interference 

To explore further the relative severity of retroactive interference (RI) 
effects in human learners and sequentially trained connectionist net- 
works, we simulated a classic retroactive interference experiment 
(Barnes & Underwood, 1959). 

A. THE BARNES AND UNDERWOOD STUDY 
In the Barnes and Underwood (1959) experiment subjects learned lists 

of eight paired associates in an A-B, A-C design. Stimuli were nonsense 
syllables (e.g., dux), and responses were adjectives (e.g., regal). The sub- 
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jects were first trained on the A-B list. On each learning trial the A stimuli 
were presented one at a time, the subject attempted for each stimulus to 
recall the appropriate B response, and finally the correct response was 
presented for the subject to study. Training ended after the first trial on 
which the subject correctly recalled all eight responses. Subjects required 
an average of 10.36 trials to reach this learning criterion. 

After completion of A-B training, subjects were given 1, 5 ,  10, or 20 
learning trials on the A-C list. Following this A-C training, the subjects 
received a final test in which each stimulus (A) item was presented, and 
the subject was asked to recall both the first list (B) and the second list 
(C) response. Barnes and Underwood argue that subjects did not expect 
to be tested on the A-B list after the completion of A-B learning, and 
hence had no reason to try to remember the B responses during A-C 
training. Further, when Barnes and Underwood asked subjects whether 
they had used the first list (B) responses to mediate learning of the second 
list (C) responses, only 2 of the 96 subjects reported that they had. (These 
two subjects reported that the use of the first-list responses had only con- 
fused them.) 

Barnes and Underwood’s results for the final recall test are presented 
in Fig, 7. As the number of A-C learning trials increased, recall of the C 
responses improved steadily, from 3.46 out of 8 (43%) after one A-C trial, 

0 1  5 10 20 

Learning Trials on A-C List 

Fig. 7 .  Percentage correct on the A-B and A-C list in the Barnes and Underwood (1959) 
study as a function of number of trials on the A-C list. 
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to 7.33 (92%) after 20 trials. At the same time recall of the B responses 
steadily declined, from 6.67 (83%) after one trial on the A-C list, to 4.12 
(52%) after 20 trials. Thus, learning of the C responses interfered with 
recall of the B responses, and this retroactive interference effect was 
larger the greater the amount of training on the A-C list. 

B. THE RI SIMULATION 
1 .  The Rl  Network 

We simulated the Barnes and Underwood study roughly, with the 
three-layer network shown in Fig. 8. The input on each trial consisted of 
a 10-unit pattern representing the A stimulus and a 10-unit context pat- 
tern. The output was a 10-unit pattern representing the response. The 
patterns used to represent stimuli, responses, and contexts were sampled 
randomly without replacement from the set of 1024 possible patterns of 
10 zeroes and ones (e.g., [0 0 1 0 1 1 1 0 0 01). 

The context pattern presented as part of the input vector served to dif- 
ferentiate the A-B and A-C lists. The context pattern was constant dur- 
ing A-B training, and was changed to a different pattern during A-C train- 

Input Units Hidden Units Output Units 

0 
0 
0 
0 
Q 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
Q 
0 
0 

Fig. 8. The RI network. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Response 
(B or C) 
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ing. Thus, the goal was to train the network to respond with the 
appropriate B response when presented with an A stimulus and the A-B 
context pattern and to respond with the appropriate C response when a 
stimulus was presented with the A-C context pattern. 

2.  Concurrent Training 

Testing with concurrent training methods revealed that when the A-B 
and the A-C items were included in a single training set that was pre- 
sented repeatedly, the network could readily learn all 16 associations. 
Manipulation of the number of hidden units indicated that the network 
could learn all of the items with as few as 10 hidden units, but that larger 
sets of hidden units led to faster learning, up to about 40 hidden units. 
Further increases in the number of hidden units led to only slight in- 
creases in rate of learning. Our initial sequential learning runs used 50 
hidden units, 10 more than the number at which the rate of concurrent 
learning began to reach an asymptote. 

We also manipulated the learning rate parameter over the range .l-1 .O, 
and found that the fastest concurrent learning was achieved with rates of 
.25 and S O ;  at both higher and lower parameter values, learning was 
slower. In the sequential learning runs we initially used a learning rate of 
.25, which is the more conservative of the two rates that yielded rapid 
concurrent learning (in the sense of yielding smaller weight changes on 
each cycle of weight adjustments). 

3.  Sequential Training 

a .  A-B Training. The network was trained on the A-B list until per- 
fect performance was achieved according to  the stringent . l  criterion. The 
mean number of learning trials required to reach this criterion was 42.5. 

b. A-C Training. After completion of A-B training, the network 
was trained on the A-C list. Following each A-C learning trial, perfor- 
mance on both the A-B and A-C lists was assessed, by presenting each A 
stimulus with the A-B context pattern, and with the A-C context pattern. 

Figure 9 depicts the effect of A-C training on the error measure for the 
B and C responses. It is apparent from the figure that with the onset of 
A-C training, error on the A-B list immediately increased dramatically. 

Catastrophic interference was also apparent when the network’s per- 
formance was assessed in terms of percentage of correct responses. Fig- 
ure 10A,B presents performance assessed with the right side of .5 and 
within . I  criteria, respectively. By either criterion performance on the 
A-B list was reduced to zero by an amount of A-C training insufficient 
to yield any correct C responses. 
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Learning Trials on A-C List 

Fig. 9. Error measure for the A-B and A-C list as a function of number of learning 
trials on the A-C list. 

Even by the lax best match criterion, performance on the A-B list was 
drastically disrupted by A-C training (Figure IOC). After three learning 
trials on the A-C list, which is sufficient to produce only about 20% cor- 
rect responses on this list, performance on the A-B list fell from 100 to 
0% correct, and remained at or near 0% thereafter. 

In contrast, Barnes and Underwood found that even after an amount 
of A-C training sufficient to yield over 90% correct responses on the A-C 
list, subjects still performed at a level of better than 50% correct on the 
A-B list. Of course, our simulation is at best a rough one; nevertheless, 
it is striking that A-C training insufficient to produce significant A-C 
learning reduces performance on the A-B list virtually to zero. 

The network’s errors are similar to those observed for the arithmetic 
model. Specifically, after training on the A-C list the network’s response 
to each A stimulus closely resembles the corresponding C response, not 
only in the presence of the A-C context pattern, but also in the presence 
of the A-B context. 

Fig. 10. A, Performance of the RI network on the A-B and A-C lists as a function of 
number of learning trials on the A-C list, assessed according to the right side of .5 criterion. 
B, Performance of the RI network on the A-B and A-C lists as a function of number of 
learning trials on the A-C list, assessed according to the within . I  criterion. C, Performance 
of the RI network on the A-B and A-C lists as a function of number of learning trials on 
the A-C list, assessed according to the best match criterion. 
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VI. Generality of the Interference Problem 

Our arithmetic and retroactive interference results raise a variety of 
questions. Would the disruption of old knowledge by new learning be 
reduced or eliminated if the networks had more hidden units, or if we 
used a different representation for the stimuli and responses? Does the 
effect occur in learning of other sorts of information? In other words, 
under what sets of conditions does new learning catastrophically disrupt 
old learning? 

At present we have no definitive answer to this question. In fact, as we 
discuss in a later section, it may not be possible to arrive at a general 
answer, given the current level of development of the connectionist 
framework. Hence, the results presented in the following section are in- 
tended not as a systematic analysis of the generality of the interference 
phenomenon, but rather as a series of demonstrations that the cata- 
strophic interference phenomenon is not limited to the particular parame- 
ter settings, and so forth, used in the simulations we have reported thus 
far. 

A. GENERALITY ACROSS SIMULATION PARAMETERS 

We have carried out a variety of manipulations within the context of 
the RI simulation, in an attempt to determine whether the severity of the 
interference could be reduced. In reporting the results of these manipula- 
tions we will present the percentage of correct responses on the A-B list 
after amounts of A-C training sufficient to yield 25, 50, and 75% correct 
responses on the A-C list. For purposes of comparison, we summarize 
the Barnes and Underwood (1959) results: For example, according to the 
tabulation, after an amount of A-C training sufficient to yield 50% correct 
responses on the A-C list, performance on the A-B list was about 80% 
correct. 

No A-C Training 25% Correct 50% Correct 75% Correct 

100 >83 80 70 

The figures are approximate, because Barnes and Underwood did not 
assess A-B performance when A-C performance was at precisely 25,50, 
or 75% correct. One A-C learning trial yielded 43% correct responses on 
the A-C list (and 83% correct on the A-B list), whereas five trials resulted 
in 78.6% correct responses on the A-C list (and 67% correct on the A-B 
list). Thus, we estimated A-B performance at the 50 and 75% A-C 
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TABLE I1 

PERCENTAGE CORRECT ON THE A-B LIST BY THE RIGHT SIDE OF .5 
CRITERION AFTER VARIOUS AMOUNTS OF A-C LEARNING, AS A 

FUNCTION OF THE NUMBER OF HIDDEN UNITS 

Amount of A-C learning 
Number of 

hidden units N o  A-C training 25% Correct 50% Correct 75% Correct 

10 100 
20 100 
50 100 
70 100 
100 100 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

performance levels by interpolation. N o  specific estimate of A-B perfor- 
mance could readily be made for the 25% A-C performance level, be- 
cause a single A-C learning trial led to A-C performance of considerably 
better than 25% correct. Hence, we note in the table only that A-B per- 
formance at this level of A-C learning would presumably be greater than 
the 83% correct obtained after one A-C learning trial. 

I .  Number of Hidden Units 

We first manipulated the number of hidden units in the network to de- 
termine whether the interference effect might be smaller with either more 
or fewer hidden units than the 50 used in the initial runs. With the learning 
rate held constant at .25, networks with 10, 20, 70, and 100 hidden units 
were trained and tested in the manner described above. 

Table I1 summarizes the performance of the networks assessed with 
the right side of .5 criterion, and Table 111 presents the results obtained 
with the best match criterion.' Results for the within . I  criterion are the 
same as those for the right side of -5 criterion, and so are not presented 
separately. Data from the initial runs with 50 hidden units are included in 
the tables for purposes of comparison. 

It is evident from the tables that manipulating the number of hidden 
units had no discernible effect on the extent to which A-C learning dis- 
rupted performance on the A-B list. Even with 100 hidden units, ten 

'For these results, and for the other findings we will present, percentage correct on the 
A-C list was computed according to the same criterion used to assess performance on the 
A-B list. Thus, for the data shown in Table 11, the percentage correct on the A-C list was 
calculated according to the right side of .5 criterion, and for the results in Table 111 A-C 
performance was assessed with the best match criterion. 
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TABLE Il l  

PERCENTAGE CORRECT ON THE A-B LIST BY THE BEST MATCH 
CRITERION AFTER VARIOUS AMOUNTS OF A-C LEARNING, AS A 

FUNCTION OF THE NUMBER OF HIDDEN UNITS 

Amount of A-C learning 
Number of 

hidden units No A-C training 25% Correct 50% Correct 75% Correct 

10 100 6 13 0 
20 100 6 0 6 
50 100 13 0 0 
70 100 0 0 0 
100 100 6 0 0 

times the number needed to learn the lists concurrently, performance on 
the A-B list was, by any criterion, at or near zero after A-C training 
sufficient to yield performance of 25% correct or better on the A-C list. 
These results, like those from the initial runs, stand in stark contrast to 
the findings of Barnes and Underwood with human subjects. 

Because varying the number of hidden units did not affect the severity 
of interference, unless otherwise indicated we used networks with 50 hid- 
den units (as in our initial RI simulation) to explore the effects of other 
manipulations. 

2.  The Learning Rate Parameter 

We next manipulated the value of the learning rate parameter, which 
determines the magnitude of weight changes during learning. To supple- 
ment the initial results obtained with a learning rate of .25, we trained 
networks at learning rates of 1.00, .75, 30, .lo, .05, .01, and .001. Results 
for the right side of .5 criterion are presented in Table IV. At all learning 
rates, performance on the A-B list was reduced to 0% correct by the time 
a performance level of 25% correct was achieved on the A-C list. Results 
for the more stringent within . I  criterion were of course the same. 

The results for the best match criterion, presented in Table V, seem 
more encouraging. Increasing the learning rate above the original value 
of .25 did not lessen the severity of interference: At learning rates above 
.25, A-B performance was reduced virtually to zero by A-C training suf- 
ficient to yield performance of 25% correct or better on the A-C list. 
However, the severity of interference was lessened somewhat by reduc- 
ing the learning rate to levels below .25. After A-C training sufficient to 
produce 25% correct on the A-C list, A-B performance was only 13% 
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TABLE IV 

PERCENTAGE CORRECT ON THE A-B LIST BY THE RIGHT SIDE OF .5 
CRITERION AFTER VARIOUS AMOUNTS OF A-C LEARNING, AS A 

FUNCTION OF THE LEARNING RATE 

Amount of A-C learning 

Learning rate No A-C training 25% Correct 50% Correct 75% Correct 
~~ ~ ~ 

I .00 100 0 0 0 
.75 100 0 0 0 
.50 100 0 0 0 
.25 100 0 0 0 
.I0 100 0 0 0 
.05 100 0 0 0 
.01 100 0 0 0 
.001 100 0 0 0 

correct with a learning rate of .25, but 38% correct with the .001 rate. 
Although these results for low learning rates appear encouraging at first, 
several considerations suggest that in fact they are something less than 
promising. 

In the first place, the dis- 
ruption of A-B performance is less than total only by the best match 
criterion. However, the best match criterion may well be too lax. By this 

a .  Laxness of the Best Match Criterion. 

TABLE V 

PERCENTAGE CORRECT ON THE A-B LIST BY THE BEST MATCH 

FUNCTION OF THE LEARNING RATE 
CRITERION AFTER VARIOUS AMOUNTS OF A-C LEARNING, AS A 

Amount of A-C learning 

Learning rate No A-C training 25% Correct 50% Correct 75% Correct 

I .oo 
.75 
S O  
.25 
.I0 
.05 
.OI 
.00 I 

100 
100 
100 
100 
100 
100 
100 
100 

6 
0 
0 

13 
13 
25 
31 
38 

0 
0 
6 
0 
0 

25 
31 
31 

0 
0 
6 
0 
6 

19 
19 
25 
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TABLE VI 

OUTPUT PATTERN EXAMPLE COUNTED CORRECT BY THE 
BEST MATCH CRITERION, THE TARGET PATTERN. A N D  A DIFFERENT, 

BETTER-MATCHING PATTERN 
~~ ~~~ ~ 

Output unit 

Activation pattern I 2  3 4 5 6 7 8 9 10 

Target pattern .I0 .90 .90 .I0 .I0 .I0 .90 .90 .90 .90 
Actual pattern .02 .95 .45 .22 .66 .I0 .82 .24 .88 .75 
Example of a better match .I0 .90 .I0 .I0 .!M .I0 .90 .I0 .90 .90 

criterion an output pattern generated by the network is considered correct 
if it matches the target output pattern more closely than it matches the 
pattern for any of the other B or C responses. Patterns that do not happen 
to occur as responses in the task are not considered. 

Consider, for example, the output pattern presented along with the tar- 
get pattern in Table VI. In this output pattern, which was generated by 
one of our networks in response to an A-B test item after some A-C 
training, two units that should be on (i.e, units 3 and 8) have activation 
values less than .5, and one unit that should be off (i.e., unit 5) has an 
activation level greater than .5. Nevertheless, the output was counted 
correct by the best match criterion, because it conformed to the target 
output pattern better than to any of the other patterns occurring as re- 
sponses in the task. However, among the possible output patterns that 
did not happen to occur as responses in the task, there are 17 that match 
the network's output better than the target pattern does. (One such pat- 
tern is presented as an example in Table VI.) In using the best match 
criterion we assume that these better matches could somehow be ruled 
out as possible responses. 

It is difficult to imagine how the better matches could be excluded un- 
less there were a postprocessor external to the network that knew the set 
of responses that occurred in the task and selected the one that best 
matched the network's output. However, it is not at all clear that this sort 
of postprocessor could be implemented straightforwardly, because the 
postprocessor would itself presumably have to learn the B and C re- 
sponses (sequentially). Therefore, if the postprocessor is assumed to be 
a network of the sort under consideration here, the interference problem 
would presumably arise with respect to its learning of the responses. In 
addition of course, if we were to postulate that the postprocessor is a 
different sort of mechanism that is not subject to severe interference dur- 
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ing sequential learning, we would have to specify what sort of mechanism 
the postprocessor is, and why this sort of mechanism is used only for 
postprocessing and not to perform the task as a whole. At best, then, the 
use of the best match criterion carries with it a promise to specify, at 
some point in the future, how the correct response could be generated 
from the network’s output. The above discussion suggests that this prom- 
ise may prove difficult to fulfill.’ 

Severity of Interference. The second reason that the results with 
low learning rates cannot be considered particularly encouraging is that 
even if we adopt the lax best match criterion, the amount of interference 
observed in the simulations is still much greater than that obtained by 
Barnes and Underwood. For example, whereas Barnes and Underwood’s 
subjects were approximately 70% correct on the A-B list after A-C train- 
ing sufficient to yield performance of 75% correct on the A-C list, the 
best performance achieved in the simulations at this level of A-C learning 
was 25% correct (with the .001 learning rate). 

Third, if we adopt the best 
match criterion as the appropriate means of assessing the network’s per- 
formance, then it must be concluded that we overtrained the networks on 
the A-B list. Barnes and Underwood trained subjects on the A-B list to 
a criterion of one perfect recall trial. Therefore, in simulating the Barnes 
and Underwood study we should terminate A-B training when a network 
first reaches a performance level of 100% correct. If we are using the best 
match criterion to assess the network’s performance during A-C training, 
then we should also use this criterion to decide when to terminate the 
initial A-B training. In other words, if we assume that a correct response 
can be generated whenever the network’s output matches the target out- 

b. 

c .  Amount of Training on the A-B List. 

’It might be suggested that in some instances a postprocessor that had learned the specific 
responses occurring in the task would not be necessary to clean up output patterns gener- 
ated by the initial network. For example, in our arithmetic network each number in the 
range 0-9 was represented by turning on three output units (see Table I). Hence, an output 
such as  [O 1 0 0 0 0 1 I I 0 0 01 could presumably be cleaned up (by turning off the second 
output unit) by a postprocessor that knew about the form of numerical representations but 
did not know the specific numbers occurring as responses in any particular task. Similarly, 
in the case of the RI simulation it might be suggested that the set of possible meaningful 
output patterns is somehow constrained so that certain patterns could be eliminated as po- 
tential responses even in the absence of knowledge of the responses that occurred in the 
task. However, given that the network must presumably be capable of representing what- 
ever response items could be presented in a task, the set of meaningful network outputs 
would then be much larger than the set of responses that happened to occur in any particular 
task. Hence, it is not clear how a postprocessor could rule out all output patterns that did 
not happen to occur in the task without learning the specific patterns that did occur. 
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put pattern better than the pattern for any of the alternative responses in 
the task, then we should stop A-B training once the network reaches 
perfect performance by this criterion. However, the data presented thus 
far have come from simulations in which the networks were trained on 
the A-B list until performance was perfect according to the much more 
stringent within , I criterion. Typically, training to perfect performance 
by the within . I  criterion requires many more learning trials than are 
needed to achieve 100% correct responses by the best match criterion. 
For example, at a learning rate of .01, the network took an average of I10 
learning trials to reach 100% correct by the best match criterion, but 720 
trials to achieve perfect performance by the within . I  criterion. Thus, 
from the perspective of the best match criterion, we gave the networks 
many more A-B learning trials than was appropriate. 

To determine whether this A-B overtraining might have affected the 
amount of interference observed with the best match criterion, we trained 
a network to perfect performance on the A-B list according to the best 
match criterion and then looked at the effects of A-C training, again using 
the best match criterion. The network was trained with a learning rate of 
.001, the rate that yielded the best retention of A-B learning in our initial 
runs (i.e., 38, 3 1, and 25% correct after A-C training sufficient to yield 
A-C performance of 25, 50, and 75% correct, respectively). The results 
were quite clear: When the network was trained only until it first reached 
perfect performance by the best match criterion, A-B performance was 
reduced to zero by A-C training sufficient to yield A-C performance of 
25% correct or better. 

d .  Number of Trials Needed to Learn the Lists. The final reason 
that low values of the learning rate parameter do not hold significant 
promise for resolving the interference problem is that at low learning rates 
the networks require an unreasonably large number of trials to learn the 
A-B and A-C lists. The Barnes and Underwood interference results were 
obtained under conditions in which subjects required an average of 10.36 
trials to learn the A-B list. Therefore, a simulation of the subjects' perfor- 
mance can be considered successful only if the simulation shows a com- 
parable amount of interference under conditions that allow learning to 
occur in a comparable number of trials. 

For learning rates in the range .25-.75, the number of trials needed to 
learn the list can be considered at least roughly comparable to the 10.36 
required by Barnes and Underwood's subjects (see Table VII). However, 
at learning rates of .01 and ,001, which were the values that yielded the 
least severe interference, the number of trials needed to reach criterion 
was clearly incommensurate with the number required by human learn- 
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TABLE VII 
TRIALS TO CRITERION ON THE A-B LIST AS A 

FUNCTION OF CRITERION AND LEARNING RATE 

Criterion 
Learning 

rate Best match Right side of .5 Within . I  

I .oo 
.75 
S O  
.25 
.to 
.05 
.01 
.ooI 

43 
15 
15 
18 
28 
35 

I10 
638 

43 
23 
20 
28 
48 
73 

308 
2,925 

48 
28 
28 
43 
78 

I50 
720 

7,225 

ers. For example, at a learning rate of .001, the network took an average 
of 638 trials to reach 100% correct by the best match criterion, 2,925 trials 
by the right side of .5 criterion, and 7,225 trials by the within . I  criterion. 
The same point applies to the learning of the A-C list: At low learning 
rates the number of A-C learning trials required by our networks to 
achieve any given level of performance was far greater than the number 
needed by Barnes and Underwood’s subjects. 

Thus, values of the learning rate parameter sufficiently high to allow 
lists to be learned in a reasonable number of trials result in total disruption 
of A-B performance by A-C learning, and at parameter settings at which 
the interference is less severe (although still too severe to be considered 
comparable to that obtained by Barnes and Underwood), the number of 
trials required to learn the lists is one or more orders of magnitude greater 
than the number needed by Barnes and Underwood’s subjects. In other 
words, a single setting of the learning rate parameter cannot satisfy both 
of the constraints imposed by the Barnes and Underwood results. 

This problem is particularly discouraging in that it forecloses what 
might appear to be a promising approach toward reducing the interference 
to levels comparable to those reported by Barnes and Underwood. In 
particular, one might have imagined that although interference was still 
too severe in the networks at the .001 learning rate, the use of even lower 
learning rates might reduce the interference to acceptable levels. How- 
ever, whether or not learning rates below .001 would in fact yield substan- 
tially reduced interference, it is clear that at these extremely low learning 
rates the number of trials required to learn the lists would be even more 
unreasonable than at the .001 rate. 
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e.  A Multiple Rehearsals Account. It might be suggested that the 
large numbers of trials our networks require at learning rates of .001 or 
below may not be as unreasonable as we have supposed. In particular, it 
might be argued that subjects in the Barnes and Underwood study may 
have rehearsed each stimulus-response pair many times on each learning 
trial. If each rehearsal. of an item is considered to be a separate presenta- 
tion, the number of presentations of each item may have been far greater 
than 10.36, the average number of learning trials. 

This argument suffers from a number of problems; here we mention 
just one. At the potentially promising learning rates below .001 (as well 
as at the .001 rate and perhaps even the .01 rate), the number of learning 
trials the network would require to learn the lists is too great to be ex- 
plained in terms of rehearsal. Even when performance was assessed by 
the lax best match criterion, the network required 638 presentations of 
each A-B pair to learn the A-B list at the .001 learning rate. In order to 
suggest that through rehearsal, Barnes and UnderWood’s subjects experi- 
enced an equivalent number of presentations in the course of 10.36 learn- 
ing trials, we would have to assume that the subjects rehearsed each sti- 
mulus-response pair approximately 62 times on each trial, for a total over 
the eight pairs of almost 500 rehearsals per trial. Given that a trial in the 
Barnes and Underwood study took about 36 secs, subjects would have to 
have rehearsed at a rate of about 14 items per second, which would not 
appear to be reasonable. If we assess performance by the right side of .5 
criterion, or the within . I  criterion, the number of rehearsals we must 
posit becomes even more unreasonable (approximately 280 rehearsals of 
each item on each trial for the right side of .5 criterion, and about 700 for 
the within . I  criterion). And, of course, it must be borne in mind that by 
any account the interference was still too great with the .001 learning rate; 
if lower learning rates were used in an attempt to reduce the interference, 
still more rehearsals would have to be posited. 

Given, then, that very low learning rates do not appear to be the answer 
to the interference problem, we continued to use the original learning rate 
of .25 when manipulating other network variables. 

3. 

In exploring the effects of manipulating the learning rate parameter, we 
found that disruption of A-B performance due to A-C learning was less 
severe when training on the A-B list was continued until perfect perfor- 
mance was achieved according to the within . l  criterion than when A-B 
training was terminated when performance was perfect by the best match 
criterion. Hence, we next attempted to determine whether still further 
training on the A-B list might substantially reduce or perhaps even elimi- 

Overtraining on the A-B List 
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nate the disruption of A-B performance resulting from A-C learning. In 
human learners overtraining on the A-B list (i.e., training beyond the 
first perfect recall trial) leads to improved performance on tests of A-B 
retention after interpolated A-C training (e.g., Postman, 1%2), and it 
seems intuitively likely that with sufficient overtraining, little or no decre- 
ment in A-B performance would be observed following moderate 
amounts of A-C learning. 

We first trained a network on the A-B list until performance was per- 
fect according to the within . I  criterion, which required an average of 
42.5 trials. The network then underwent 1,000 additional A-B learning 
trials. This massive overtraining reduced the average squared error per 
output unit from .0013 to less than .000001. The network was then trained 
on the A-C list, as in our previous simulations. 

The results are presented in Table VIII for each of the three criteria. 
By any of the criteria, A-B performance was reduced virtually to zero by 
A-C training sufficient to yield performance of 25% correct or better on 
the A-C list. Thus, extensive overtraining involving over 20 times the 
number of learning trials required to reach the initial learning criterion 
failed to prevent the drastic disruption of A-B performance by small 
amounts of A-C training. 

' 

4. Freezing of Weights 

We next attempted to determine whether the disruption of A-B perfor- 
mance by A-C learning could be reduced to reasonable proportions if the 
connection weights established during A-B training were not allowed to 
change during A-C training. 

A network with 100 hidden units was used. As in all of the simulations, 
each connection weight was initialized to a small random value (Rumel- 
hart, Hinton, & Williams, 1986). During A-B training, the learning algo- 
rithm was allowed to alter the weights on the connections to and from 50 

TABLE VIII 

PERCENTAGE CORRECT BY EACH CRITERION ON AN OVERTRAINED A-B 
LIST AFTER VARIOUS AMOUNTS OF A-C LEARNING 

Amount of A-C learning 

Criterion No A-C traning 25% Correct 50% Correct 75% Correct 

Best match 100 6 0 0 
Right side of .5 100 0 0 0 
Within . I  100 0 0 0 
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of the hidden units. The connection weights for the other 50 hidden units 
were fixed at their initial values. 

The network was trained on the A-B list until performance was perfect 
according to the within . I  criterion. The connection weights for the 50 
hidden units involved in the A-B learning were then frozen. That is, the 
weights were fixed at the values established by the A-B training and were 
not allowed to change during A-C training. Rather, A-C training was 
allowed to modify the connection weights for the 50 hidden units that 
were not involved in A-B learning (i.e., the weights that were fixed at 
their initial values during A-B learning). All weights, whether frozen or 
not, contributed to the generation of outputs when inputs were presented 
to the network. 

The results are shown in Table IX. It is obvious from the table that 
freezing the weights failed to prevent the catastrophic disruption of A-B 
performance by A-C training: By any criterion, percentage correct on the 
A-B list was at  zero after A-C training sufficient to yield A-C perfor- 
mance of 25% correct or better. 

At first glance, this result might seem nonsensical. If the weights estab- 
lished by A-B learning were fixed during A-C training, how could perfor- 
mance on the A-B list have been disrupted? The answer is that the 
weights established by the A-C training, as well as those resulting from 
A-B training, come into play whenever an input is presented to the net- 
work. Thus, the combined effect of the weights established by A-B train- 
ing and the weights established during A-C training was to produce incor- 
rect patterns of activation on the output units when the A-B list was 
tested after some A-C training. 

Freezing the weights established by A-B learning not only failed to 
reduce the disruption of A-B performance by A-C training, but also sub- 
stantially impaired learning of the A-C list. When weights were not fro- 

TABLE IX 
PERCENTAGE CORRECT BY EACH CRITERION O N  THE A-B LIST AFTER 

VARIOUS AMOUNTS OF A-C LEARNING WHEN WEIGHTS ESTABLISHED 
DURING A-€3 LEARNING WERE FROZEN DURING A-C TRAINING 

Amount of A-C learning 

Criterion N o  A-C training 25% Correct 50% Correct 75% Correct 

Best match 100 0 0 0 
Right side of .5 100 0 0 0 
Within . I  100 0 0 0 
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zen, the average number of A-C learning trials needed to achieve perfect 
A-C performance according to the within . I  criterion was 74.5 for net- 
works with 50 hidden units, and 69 for networks with 100 hidden units. 
In contrast, when the weights established by A-B training were frozen, 
the average number of trials to criterion on the A-C list was 151. Under 
all of these conditions, training the A-B list to the same criterion required 
roughly 40 trials. Thus, whereas Barnes and Underwood (1959) found that 
rate of learning was approximately the same for the A-B and A-C lists, 
freezing the connection weights established by A-B training resulted in 
much slower A-C than A-B learning. 

5. Target Activation Values of 0 and I 

In the work reported thus far, we have followed Rumelhart, Hinton, 
and Williams (1986) in using . l  rather than 0 as the target activation value 
for an output unit that should be off, and .9 rather than 1 .O for an output 
unit that should be on. That is, we have computed the error for an output 
unit by subtracting the unit's activation value from . 1  if the unit should 
be off, and from .9 if the unit should be on. These error values (among 
other factors) determine the direction and magnitude of the weight 
changes that occur during training. 

The use of . 1  and .9 as the target activation values has the effect of 
preventing the connection weights from becoming very large as training 
progresses, and hence of preventing output activation levels from ap- 
proaching O m  1 .O. In fact, if presentation of an input produces an activa- 
tion level of greater than .9 in an output unit that should be on, weight 
changes that tend to decrease the activation level will be made. Similarly, 
if an input produces an activation level of below . I  in an output unit that 
should be off, weight changes that tend to increase the activation level 
will occur. 

TABLE X 

PERCENTAGE CORRECT BY EACH CRITERION ON THE A-B LIST 

TARGET ACTIVATION LEVELS OF 0 AND 1 .o 
AFTER VARIOUS AMOUNTS OF A-C LEARNING AT 

Amount of A-C learning 

Criterion No A-C training 25% Correct 50% Correct 75% Correct 

Best match 100 0 6 0 
Right side of .5 100 0 0 0 
Within . I  100 0 0 0 
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It might be suggested, therefore, that the use of .1 and .9 as the target 
activation levels actually prevents the A-B list from being thoroughly 
learned. Hence, we explored the effects of A-C training on A-B perfor- 
mance in simulations using 0 and 1.0 as the target activation levels. 

The results are presented in Table X. It is apparent that the use of 0 
and 1.0 as the target output activation levels did nothing to reduce the 
disruption of A-B performance by A-C training. 

Further, this manipulation drastically impaired learning of the A-C list. 
In both runs with target activation levels of 0 and 1 .O, the A-C list failed 
to reach perfect performance by the within . 1 criterion in 1,000 A-C learn- 
ing trials; rather, the networks became stuck in local minima at which 
some items were correct but others were in~orrect .~ 

6 .  Local Representations for Stimuli and Responses 

Finally, we sought to determine whether the catastrophic interference 
occurring in our RI network might be specific to the particular representa- 
tions we chose for stimuli, responses, and list contexts. In the simulations 

'This failure to learn the A-C list may reflect the nature of the back-propagation learning 
algorithm. When the activation of an output unit is very close 0 or 1 .O, the learning algorithm 
leaves the weights on connections to that unit virtually unchanged, regardless of whether 
the output activation level is near the correct or. the incorrect extreme. For example, if an 
input pattern produces an activation level of .999 in an output unit, the weights on connec- 
tions to that unit will be changed very little, regardless of whether the target activation level 
for that unit is 1 .O or 0. In calculating weight changes, the difference between the target and 
actual output values is multiplied by the derivative of the logistic activation function at the 
point corresponding to the activation level of the output unit. This derivative is given by a( I 
- a). where a is the activation of the output unit. As the activation level approaches 0 or 
1.0. the derivative approaches 0. Thus, regardless of the difference between an output unit's 
target and actual activation levels, the weight changes for connections to that unit will ap- 
proach 0 as the unit's activation level approaches 0 or 1.0. If, then, the activation of an 
output unit is near the incorrect extreme (i.e., 0 for a unit that should be on, and 1.0 for a 
unit that should be off), the learning algorithm may fail to correct the error. (The use o f .  I 
and .9 as the target activation values usually avoids this problem, because output activation 
levels are actively prevented from approaching the extreme values of.0 and I .O.) With target 
activation values of 0 and 1.0, training on the A-B list created a situation in which output 
activation levels for some A-C items were very close to the incorrect extreme. That is, at 
the beginning of A-C training the network generated, for some A-C items, outputs in which 
one or more units with target activation levels of 1 .O had activation levels very close to 0, 
andor one or more units with target activation levels of 0 had activation levels very close 
to 1.0. Extensive training failed to alter some of these incorrect outputs, with the result that 
good performance on the A-C list was not achieved. (This phenomenon does not occur at 
the beginning of A-B training, because the weights in the network are small and random, 
so that an input pattern is very unlikely to generate either a very high or very low activation 
level in an output unit.) 
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reported thus far, we used distributed representations for stimuli and re- 
sponses. Each stimulus item was represented by a random pattern of acti- 
vation across 10 input units, so that the various stimulus items overlapped 
with respect to the units that were activated, or on. For example, for both 
of the stimuli shown below, the second, sixth, and ninth input units were 
on: 

[ 0 1 0 0 1 1 0 0 1 1 ]  

[ I  I1001 1 I101  

Thus, when either of these stimuli was presented, the second, sixth and 
ninth input units sent activation to the hidden unit layer. (Overlap across 
input patterns with respect to units that are off is less significant, because 
units that are off do not send activation to other units.) Similarly, there 
was overlap across response terms and between the A-B and A-C con- 
text patterns. 

It might be imagined that interference could be reduced by the use of 
representations in which the various stimuli, responses, and list contexts 
are more distinct from one another. To explore this possibility we stimu- 
lated the Barnes and Underwood (1959) study using “local” representa- 
tions for stimuli, responses, and list contexts. Each of the eight stimulus 
terms was represented by turning on a single unit in an eight-element 
stimulus vector. For example, one stimulus term was represented by the 
pattern [ I  0 0 0 0 0 0 01, a second by the pattern [0 1 0 0 0 0 0 01, and so 
forth. Thus, there was no overlap between stimulus patterns with respect 
to the units that were on. Similarly, each of the 16 responses (i.e., eight 
B and eight C responses) was represented by turning on a single unit in a 
16-element output vector. List context was represented by a two-element 
vector with one unit turned on for the A-B context (i.e., [ I  O]), and the 
other unit turned on for the A-C context (i.e., [0 11). Note that even with 
local representations for stimuli, responses, and list contexts, the repre- 
sentations of stimulus-response associations are nevertheless distributed 
across many different weighted connections between input and hidden 

. units and between hidden and output units. 
With the local representations all 16 items were readily learned under 

concurrent training conditions, although learning was somewhat slower 
than with distributed representations. 

In the sequential training runs the network was first trained on the A-B 
list until performance was perfect by the within . I criterion. As in concur- 
rent training, learning proved to be slower with local than with distributed 
representations: The average number of trials required to learn the list 
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TABLE XI 
PERCENTAGE CORRECT BY EACH CRITERION ON THE A-B LIST AFTER 

FOR STIMULI, RESPONSES, AND CONTEXT 
VARIOUS AMOUNTS OF A-C LEARNING, WITH LOCAL REPRESENTATIONS 

Amount of A-C learning 
~~ 

Criterion No A-C training 25% Correct 50% Correct 75% Correct 
_____~ ~~~ 

Best match 100 13 0 0 
Right side of .5 100 0 0 0 
Within . I  100 0 0 0 

was 140 (compared to 42.5 for an otherwise comparable network with 
distributed  representation^).^ 

After completion of A-B training, the network was trained on the A-C 
list. The impact of this training on A-B performance is shown in Table 
XI. It is apparent that A-B performance is once again catastrophically 
disrupted by A-C training sufficient to yield performance of 25% correct 
or better on the A-C list. Thus, the severe interference we have observed 
repeatedly with the distributed representations is not specific to these 
representations. 

It is important to point out that in using local representations we did 
not eliminate overlap between A-B and A-C input patterns with respect 
to the units that were on. In the A-B, A-C paradigm used in the Barnes 
and Underwood study, the stimulus terms (e.g., dux) are the same in the 
two lists. Consequently, in simulating this study we used the same eight 
stimulus patterns in our A-B and A-C lists. For example, one of the A-B 
input patterns was constructed by pairing the stimulus pattern 
[ 1 0 0 0 0 0 01 with the A-B context pattern [ I  01, yielding the full input 

'The slower learning with local representations may reflect the fact that with distributed 
but not local representations there are regularities across items in relationships between 
input and output unit states. Even when input and output patterns are randomly generated, 
as in our RI simulations with distributed representations, there are likely to be such regulari- 
ties by chance, as long as the number of patterns in the training set is considerably less than 
the total number of possible patterns. In our A-B list with distributed representations, for 
example, when the first and second input units were on, the second output unit was always 
on, and the sixth was always off. Regularities of this sort may be exploited by the network 
in learning the items. (Indeed, the capturing of such regularities is the basis for so-called 
automatic generalization.) With the local representations in our R1 network, however, there 
are no regularities across items to be captured (with the exception of those following from 
the fact that all of the output units were usually off). 



Interference in Connectionist Networks I45 

pattern [ I  0 0 0 0 0 0 0 1 01. The input pattern for the A-C item with the 
same stimulus term was generated by pairing the same stimulus pattern 
with the A-C context pattern [O I], yielding [ I  0 0 0 0 0 0 0 0 I]. Thus, 
for both the A-B item and the corresponding A-C item, the first input 
unit was turned on. 

A representational format that might have greater potential for reducing 
interference is one in which corresponding A-B and A-C input patterns 
are completely nonoverlapping. For example, we might represent a par- 
ticular stimulus term in the A-B list context by pattern 1 shown below, 
and the same stimulus term in the A-C context by the nonoverlapping 
pattern 2: 

1. [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]  

2. [O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]  

In a representation of this sort a single activated unit represents the com- 
bination of a particular stimulus term with a particular context (e.g., acti- 
vation of unit I represents dux in the A-B list context, and activation of 
unit 2 represents dux in the A-C context). Unfortunately, this sort of 
representation cannot be considered adequate, because it entirely fails to 
capture the fact that the same stimulus terms are used in the two lists. 
Hence, the representations cannot distinguish an A-B, A-C procedure 
from an A-B, C-D procedure in which the stimulus terms are completely 
different in the two lists. Given that the performance of human learners 
varies substantially as  a function of whether the stimulus terms are the 
same or different in the two lists (e.g., retroactive interference is far 
greater with the A-B, A-C procedure than with the A-B, C-D proce- 
dure), the inability to distinguish the two procedures constitutes a fatal 
shortcoming of the completely nonoverlapping representations. 

7.  Summary of RI Results 

The catastrophic disruption of A-B performance by A-C training ob- 
served in our original RI simulation was not eliminated by varying the 
number of hidden units or the learning rate parameter, by massive over- 
training on the A-B list, by freezing the weights established by A-B learn- 
ing, by using 0 and I rather than . I and .9 as the target output activation 
values, or by using an alternative representation for the stimuli, re- 
sponses, and list contexts. In fact, we have failed to find any set of cir- 
cumstances in which a network’s performance on the A-B list after A-C 
training even approached the levels observed by Barnes and Underwood 
(1959) with human learners. For example, whereas Barnes and Under- 
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wood obtained A-B performance of about 80% correct after A-C training 
sufficient to yield 50% correct responses on the A-C list, the best A-B 
performance we were able to obtain with comparable amounts of A-C 
training was 31% correct. Furthermore, to achieve 31% correct we had 
to use a learning rate of .001, which results in unacceptably slow learning;, 
we had to assess performance according to the best match criterion. 
which is probably too lax; and we had to overtrain the network massively 
on the A-B list. 

Barnes and Underwood (1959), discussing the function relating A-B 
performance to amount of A-C training in their study, state that 

A hyperbolic equation fitted to this curve predicts an asymptote at 3.46 [correct out 
of 8 on the A-B list]. Thus, it does not seem that all items would be extinguished, 
even with an extremely large number of trials on A-C. This conforms to the fact that 
forgetting in the R1 paradigm has not been shown to be complete even with very high 
degrees of interpolated learning (Barnes & Underwood, 1959. p. 102). 

Similarly, in a review of interference research, Postman and Underwood 
(1973, p. 20) state that “regardless of the degree of IL [i.e., interpolated 
learning of the second list], unlearning [of first-list responses] is virtually 
never complete and in fact rarely exceeds about 50%:’ In contrast, we 
have been unable to achieve reductions in A-B performance as small as 
50%. In fact, in the vast majority of our simulations A-B performance 
was reduced to virtually 0% correct by A-C training sufficient to yield 
only two out of eight correct responses on the A-C list. 

Of course, it is conceivable that some untried combination of parameter 
settings, representational formats, and so forth would yield simulation 
results comparable to those reported by Barnes and Underwood (1959). 
However, we have been unable to find any such combination in spite of 
significant efforts to do so. 

B. GENERALITY OF THE INTERFERENCE PROBLEM ACROSS DOMAINS 
We have not yet systematically explored the generality of the interfer- 

ence problem across types of information to be learned. However, it ap- 
pears that the problem may occur in a variety of domains. In the first 
place, we have observed catastrophic interference not only in the RI sim- 
ulation, but also in the simulations of arithmetic fact learning. Further- 
more, other examples of the phenomenon have been reported. For exam- 
ple, Ratcliff (1988) has found severe interference in sequential training of 
“encoder” networks; Hinton and Plaut (1987) have reported interference 
effects resulting from sequential training of associations between random 
vectors in a situation somewhat different from our RI simulation; and 
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Sejnowski and Rosenberg (1987) have interpreted massed versus distrib- 
uted practice effects in their NetTalk model in terms of disruption of pre- 
viously acquired information by new learning. Indeed, Sutton (1986) ar- 
gues that steepest-descent learning algorithms, such as the back- 
propagation algorithm, are especially prone to disruption of previous 
learning by new learning. 

Finally, if we consider why the interference phenomenon occurs, it be- 
comes clear that there is no reason to expect the phenomenon to be lim- 
ited to a few specific situations or parameter settings. This point is dis- 
cussed in the following section. 

VII. Why Does New Learning Disrupt Old Knowledge? 

In traditional cognitive models sequential learning does not pose any 
special problems. Consider, for example, a propositional network model 
of memory for arithmetic facts. In a model of this sort concepts are repre- 
sented by individual nodes, and facts are represented by connecting 
nodes with labeled links that represent relationships among concepts 
(e.g., Anderson 8t Bower, 1973; Anderson, 1983). 

Figure 1lA presents (in a simplified form) an arbitrary portion of a 
propositional network representing addition facts. The fact 5 + 4 = 9, for 
example, is represented by the network structure connecting the nodes 
representing 5 .4 ,  the addition operation, and 9. Also shown is the fact 6 
+ 4 = 10. 

The learning of new facts involves the building of new propositional 
structures in the memory network. Thus, Fig. 11B shows the proposi- 
tional network after the learning of a new fact: 7 + 4 = 1 1. Because each 
fact has a representation separate from the representations of other facts, 
the storing of the new fact representation does not in any way disrupt the 
representations of the previously learned facts (although ease of retrieval 
may be affected). 

In a connectionist model with distributed representations the situation 
is quite different, because each connection weight is involved in respond- 
ing to many different inputs. Thus, adjustment of weights to encode the 
desired response to a new input pattern will necessarily alter the net- 
work’s response to other inputs as well. In many respects this is a desir- 
able feature. It is, for example, the basis for so-called automatic general- 
ization, in which a network, through training on some patterns, comes to 
respond appropriately to other (untrained) patterns. The disadvantage is 
that changing weights to encode a new piece of information may alter 
previously learned responses to other input patterns. This is what hap- 



I48 Michael McCloskey and Neal J. Cohen 

9 10 

4 5 + 6 

A 

9 10 11 

4 5 + 6 7 

B 
Fig. I I .  A, Propositional network representation for some addition facts. B, The net- 

work after learning the new fact 2 + 3 = 5 .  

pened in our arithmetic and RI simulations: Weight adjustments during 
learning of the twos addition facts altered the previously learned re- 
sponses to the ones facts, and weight adjustments during learning of the 
A-C list altered previously learned responses to the A-B items. 

An example may help to clarify just why this interference effect occurs. 
Figure 12 depicts a very simple network consisting of two input units, P 
and Q ,  connected to a single output unit R. We will be concerned with 
training the network on the two patterns shown in the figure. In pattern 
1, both input units are on, and the output unit is also on. In pattern 2, 
unit P is on, unit Q is off, and the output unit R is off. 

For any network, the configuration of connection weights may be 
thought of as a point in a multidimensional space with a number of dirnen- 
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Q 

~~ ~~~ 

Input output ~ _ _ _  

P Q  R 

Pattern 1 1 1  1 

Pattern 2 1 0  0 

Fig. 12. A simple three-unit network, and two training patterns. 

sions equal to the number of weights, and the position on each dimension 
representing the value of the corresponding weight. With our two-connec- 
tion network, the weight configuration may be depicted as a point on a 
plane. In illustrating the performance of the network we will use the x 
axis to represent the weight on the P-R connection, and the y axis to 
represent the Q-R weight. 

Consider pattern 1, with both input units on and the output unit also 
on. Where in weight space must the weight configuration be to produce 
the correct output for this pattern? Suppose that we want the output unit, 
which should be on for pattern 1, to have an activation of .9 or greater. 
The logistic function that transforms a unit’s inputs into an activation 
level is such that a unit needs inputs summing to approximately 2.20 in 
order to achieve an activation of .9. Thus, we want the inputs to unit R 
to sum to at  least 2.20. 

The inputs to unit R are the activation of unit P times x (the weight on 
the P-R connection), and the activation of unit Q times y (the weight on 
the Q-R connection). For pattern I the input to unit R will be (lx) + (ly), 
or simply x + y. Thus, for the network to respond correctly to pattern 1, 
the sum of x and y must be at least 2.20. Figure 13A shows the region in 
weight space satisfying this constraint. Any weight configuration in the 
dark shaded region will yield a correct response to  pattern 1. 



Fig. 13. A. Solution space for pattern I. (The boundary of the solution region intersects 
the x and y axes at 2.20.) B, Solution space for pattern 2. (The boundary of the solution 
region intersects the x axis at -2.20.) C, Solution space for pattern I (dark shading), solu- 
tion space for pattern 2 (light shading), and overall solution space (solid region). 
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Now consider pattern 2, in which P is on, Q is off, and R is off. Assum- 
ing that we want the activation level of R to be . l  or less for this pattern, 
the inputs to unit R must sum to -2.20 or less. For pattern 2, the input 
to R will be simply x ,  the weight from P to  R. No  input will be received 
from unit Q, because this unit is off in the input pattern. Thus, the solu- 
tion space for pattern 2 is defined by the expression x s - 2.20, indicated 
by the light shaded region in Fig. 13B. 

It is easy to see that if we want the network to  respond correctly to 
both pattern 1 and pattern 2, the weight configuration must be somewhere 
in the intersection of the solution spaces for the two patterns, as shown 
by the solid triangular area in Fig. 13C. If the weight configuration is in 
this region, which we will call the overall solution space, the network will 
respond correctly to both pattern 1 and pattern 2. 

Figure 14A presents the results of concurrent training on patterns 1 and 
2. The line in the figure shows the movement of the weight configuration 
over learning trials.’ It is evident from the figure that the weight configu- 
ration moves rather directly to the overall solution space. The box at the 
bottom of the figure shows the network’s output for the two patterns at 
the completion of training. 

Each pattern to be learned may be thought of as pulling the weight 
configuration toward the solution space for that pattern. With concurrent 
training, both patterns are pulling at  the same time; as a result, the weight 
configuration moves toward a region of weight space that is good for both 
patterns. More specifically, pattern 1 pulls diagonally upward and to the 
right, and pattern 2 pulls horizontally to the left; the weight configuration 
moves in the direction of the resultant of these two forces. 

But what if we train sequentially? The line labeled 1 in Fig. 14B shows 
the movement of the weight configuration during training on pattern 1. 
The configuration moves directly toward the solution space for pattern I .  
If the network is then trained on pattern 2, the weight configuration turns 
and moves directly toward the solution region for pattern 2, as shown by 
the line labeled 2 in the figure. At the completion of training, the network 
responds appropriately to pattern 2 but no longer gives a correct response 
to pattern 1. In fact, the network is farther from the solution space for 

’In training the three-unit network we used a momentum term of zero, which has the 
effect of exaggerating the effects of sequential training without altering their fundamental 
character. Also, for purposes of expository convenience the units in the network did not 
have biases; 0 and I were used as the target activation values; connection weights were 
updated after every learning trial rather than after every item; and the weights were initially 
set to zero, rather than to small random values. None of these simplifications affects the 
points we illustrate with the network. 



Fig. 14. A, Movement of the weight configuration over learning trials with concurrent 
training on patterns 1 and 2. B, Movement of the weight configuration over learning trials 
with sequential training on pattern 1 (segment labeled I )  and then on pattern 2 (segment 
labeled 2). C, Movement of the weight configuration over learning trials with sequential 
training on pattern 2 and then on pattern 1. 
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pattern I than when training began. The output for pattern I ,  which 
should be about .9, and at the beginning of training was .5 ,  is now less 
than .3. 

With sequential training, the weight configuration is first pulled directly 
toward the solution space for pattern 1, and then directly toward the solu- 
tion space for pattern 2. Once training on pattern I stops, this pattern is 
no longer pulling toward its solution space. There is nothing to prevent 
the weight configuration from being pulled out of the pattern 1 solution 
space by the training on pattern 2, and there is nothing to cause the weight 
configuration to move toward the overall solution space. 

Similarly, if the network is trained first on pattern 2 and then on pattern 
I ,  the weight configuration moves directly to the pattern 2 solution space, 
and from there directly to the pattern I solution region, as shown in Fig. 
14C. 

If training alternates between the two patterns-pattern 2, then pattern 
1, then pattern 2, and so forth-the weight configuration will zigzag to- 
ward the overall solution space. (In fact in concurrent training the weight 
configuration zigzags in exactly this manner, although in very small steps, 
as long as the weights are adjusted after every pattern.) If training is 
strictly sequential, however, the resulting weight configuration is unlikely 
to be appropriate for the initially learned pattern. 

The point of this example is not that new learning will always severely 
disrupt previously acquired information. The extent of the disruption will 
depend upon the shapes and relative positions of the solution spaces for 
the old and new patterns. In some situations new learning might conceiv- 
ably pull the initially established weight configuration to a point in weight 
space that still permits good performance on initially learned material. 

Rather, the point is that in sequential training there is nothing to pre- 
vent new learning from pulling the weight configuration out of the solu- 
tion space for previously learned material, and there is nothing to ensure 
that the configuration moves to a region of weight space that is good for 
both old and new information. To put it another way, gradient-descent 
learning algorithms, such as the back-propagation algorithm used in the 
present simulations or the Boltzmann machine algorithm (Ackley et al., 
1985), are simply not designed to deal with situations in which the set of 
items to be learned changes over time. 

VIII. Possible Solutions 

How might the interference problem be resolved? In this section we 
consider two possible approaches, suggesting that neither holds substan- 
tial promise. 
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A. MODIFICATION OF LEARNING ALGORITHMS 

One might imagine that the learning algorithms could be modified in 
such a way that previously learned input-output mappings would be pro- 
tected from alteration while new mappings are being encoded. However, 
this would probably be difficult to accomplish, for the following reason. 

If a learning algorithm is to protect previously learned patterns, it must 
presumably have some way of identifying those patterns. If the algorithm 
cannot determine which particular input-output mappings have been 
learned, it is not clear how it could protect these mappings from dis- 
ruption. 

Unfortunately, there is no straightforward way of identifying the partic- 
ular input-output mappings on which a network has previously been 
trained. A connectionist network with distributed representations is best 
thought of not as  storing the specific patterns on which it has been 
trained, but rather as inducing from training on some patterns a function 
that will map any input pattern onto an output pattern. In other words, it 
is not the case that a network will produce an output only in response to 
a previously trained input pattern. Rather, the network will produce an 

a 

Input output ~- 
P Q  R 

Pattern 1 1 1  .92 

Pattern 2 1 0  .10 

Untrained 0 1  .99 

Fig. IS. Weights established by training the PQR network concurrently on patterns I 
and 2, and the network's output to the two training patterns and one untrained pattern. 
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output for any arbitrary input pattern. And there is no straightforward 
way to determine from an output whether it represents (1) a learned re- 
sponse to a previously presented input, (2) a valid generalization from the 
trained patterns, or (3) a meaningless or incorrect response to a pattern 
that has not been trained. As a consequence, there is no way of knowing 
which particular input-output mappings should be preserved when new 
learning occurs and which can be changed without cost. Another way of 
saying this is that the network has no representation of a pattern as a 
whole. 

This point may be clarified by referring once more to our PQR network. 
Figure 15 shows the connection weights established by training concur- 
rently on patterns 1 and 2. These weights encode regularities at the level 
of individual units. For example, the weight from Q to R indicates that 
when unit Q is on, there is a strong tendency for unit R to be on. How- 
ever, the weights do not encode information about which particular input 
patterns have been trained. That is, there is nothing in the weights to 
indicate that the network was trained on the input patterns [ 1 11 and [ 1 
01, but not on, say, [0 11. The network will produce an output for any 
pattern of activation across the input units. For example, presentation of 
the untrained input pattern [O 11 will produce an activation level of greater 
than .9 in the output unit, and in fact will activate the output unit more 
strongly than the trained pattern [ I  11. Thus, there is no way to tell by 
looking at the weight configuration that [I I] has been trained, and [0 11 
has not.6 

The thrust of this example is that as long as information is represented 
in an exclusively distributed fashion, such that information at the level of 
whole concepts and relations among them is not explicitly represented, it 
is unclear how a learning algorithm could be devised that would protect 
against disruption just those patterns that have been previously learned. 

B.  RESTRICTING NEW LEARNING TO ADJUSTMENT OF 

CONTEXT WEIGHTS 

David Rumelhart (personal communication, November 1988) has sug- 
gested that the interference problem might be resolved by assuming that 
episodic memories are established primarily by modifying weights on 
connections from context units. Imagine a hypothetical A-B, A-C retro- 
active interference experiment in which subjects learn arbitrary associa- 

6We would expect therefore that networks of  the sort under consideration in this chapter 
would not perform well on  recognition tasks. And indeed Ratcliff (1988) has found that 
multilayer encoder networks and McClelland and Rumelhart’s (1985) autoassociative model 
perform poorly on recognition tasks. 
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tions between words (e.g., perspective-banana in the A-B list, and per- 
spective-quality in the A-C list). Rumelhart’s proposal assumes that for 
any two words that might be paired in the experiment, an association 
has previously been established. With respect to the above examples, the 
proposal would assume that in some previous context perspective and 
banana had been associated, and that in some other context perspective 
and quality had been associated. 

These preexperimental associations could be established in a network 
that maps context plus word input patterns onto word output patterns 
(see Fig. 16). Specifically, the preexperimental associations would be es- 
tablished by training the network to map particular word inputs onto par- 
ticular word outputs in particular contexts (e.g., map perspective in con- 
text x onto abacus), such that across the various contexts all possible 
word-word mappings are learned. The connection weights created by this 

Input Units Hidden Units Output Units 

0 
0 
0 
0 0 

Stimulus 

(Word) 
0 
0 

0 
0 

0 

/ 0 

0 
0 
0 
0 
0 

0 
0 
0 
0 

- 
a 

Response 

(Word) 

Fig. 16. A network for mapping word plus context inputs onto word outputs. 
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training would allow any word input to be mapped onto any word output, 
given appropriate signals from the context units. 

Once all word-word associations have been established through preex- 
perimental training, the learning of A-B and A-C lists in a simulated R1 
experiment could be accomplished solely by modifying the context- 
unit-hidden-unit weights according to the learning algorithm; no changes 
need be made for other weights (i.e., weights on connections from stimu- 
lus input units to hidden units, or the weights on connections from hidden 
to output units).' The modifications of context weights serve in essence 
to select from the large number of previously learned responses to a stim- 
ulus word the particular response required in the context of an experi- 
mental list. For example, in the learning of the A-B list, context weights 
would be modified in such a way as to select the response banana from 
among all of the responses previously associated with the stimulus per- 
spective, so that the network would generate the output banana in re- 
sponse to the input perspective in the A-B context. Thus, whereas learn- 
ing A-B and A-C lists in our RI simulation involved establishing the A-B 
and A-C associations in the network, learning such lists in the Rumelhart 
scheme involves selecting from among previously established associa- 
tions. 

If the A-B and A-C context patterns are nonoverlapping (i.e., if units 
that are on in the A-B context pattern are off in the A-C pattern, and 
vice versa), then none of the weights involved in representing the A-B 
associations will be modified during A-C learning, and no interference 
will occur. A simplified example may help to clarify these points. Sup- 
pose that the A-B context pattern is [ I  1 0 01, and the A-C pattern is [O 
0 1 I]. A-B training will modify weights on connections from the first and 
second context units, but not the weights on connections from the third 
and fourth context units. (The learning algorithm does not modify weights 
on connections from an input unit if that unit is off in the input pattern.) 
A-C learning, on the other hand, will modify the weights on connections 
from the third and fourth context units, but not the weights on connec- 
tions from the first and second units. Thus, A-C learning will not modify 
weights established by A-B learning. Nor will the weightsestablished by 

'D. E. Rumelhart (personal communication, November 1988) suggests that the weights 
on connections from stimulus input units to hidden units, and from hidden to output units, 
might be allowed to change during the learning of A-B and A-C lists, but at a much slower 
rate than weights on connections from context units. However, this assumption does not 
contribute to a reduction of interference in the Rumelhart scheme; in fact, allowing the 
noncontext weights to change would increase interference. In any event, the points we 
develop in the following discussion remain the same whether the noncontext weights remain 
fixed or change slowly. 
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A-C learning come into play when A-B associations are tested, because 
all of the context units that are on in the A-C context pattern are off in 
the A-B pattern, and therefore will not send signals to the hidden units 
when the A-B pattern is presented. Thus, A-C learning will leave the A- 
B learning intact. 

Of course, if some units are on in both the A-B and A-C context pat- 
terns, then A-C learning will modify some weights involved in represent- 
ing the A-B associations, and some interference will occur. However, if 
the overlap between context patterns is slight, then the interference 
would presumably not be catastrophic. 

Although Rumelhart’s proposal is an interesting one, it does not consti- 
tute a solution to the interference problem. In the first place, the Rumel- 
hart scheme applies only to the learning of episodic as opposed to seman- 
tic information. In other words, the scheme applies to the establishment 
of context-specific associations (i.e., input A maps onto output B in con- 
text C). However, the scheme does not apply to the acquisition of general 
knowledge, that is, knowledge that is context independent, such as 
knowledge of arithmetic facts. 

Even within the realm of episodic memory, the range of application of 
the Rumelhart scheme is limited. In particular, the scheme cannot be ap- 
plied to the learning of associations between items that did not have pre- 
existing representations in memory, because these items could not have 
been preexperimentally associated. Thus, for example, learning associa- 
tions between novel sentences would not fall within the scope of the 
Rumelhart proposal. Also, unless preexperimental representations and 
associations are posited for nonsense syllables, it is not clear how the 
scheme would be applied to paired-associated learning with nonsense syl- 
lable stimuli and/or responses (as in the bulk of the published research on 
retroactive interference). 

Even if we focus on items that clearly have preexisting representations 
(e.g., words), the Rumelhart scheme encounters major problems. Con- 
sider a college student serving as a subject in our hypothetical retroactive 
interference experiment. Assume that the student has a vocabulary of 
50,000 words, any two of which might serve as a stimulus-response pair 
in the experiment. In order to apply Rumelhart’s scheme to this situation, 
one must assume that prior to the experiment the student had learned 
2,500,000,000 associations between words (i.e., 50,000 x 50,000), or 
about 350,000 per day for his or her entire life. In our view this is not a 
reasonable assumption. 

Of course, one could assume that only some word-word associations 
(e.g., dog-cat, but not perspective-banana) are learned preexperimen- 
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tally. However, taking this tack would serve only to limit further the 
scheme’s range of applicability, and in particular would presumably place 
arbitrary associations such as perspective-banana beyond the scope of 
the scheme. 

A further difficulty with the Rumelhart scheme’s preexperimental 
learning assumptions is that a network would require concurrent training 
to acquire the preexperimental associations. That is, the full set of associ- 
ations to be learned (e.g., perspective in context x +  banana, perspective 
in context y + quality, perspective in context z + abacus) would have 
to be presented repeatedly to the network, with small weight adjustments 
occurring on each presentation. Otherwise, the interference problem 
would arise in the acquisition of the preexperimental associations. If it is 
assumed that human learning of preexperimental associations similarly 
requires repeated encounters with all possible pairs of items, then the 
scheme’s already implausible learning assumptions are further strained. 
If, however, the concurrent training required by the network is not taken 
to reflect the process whereby humans acquire preexperimental associa- 
tions, then the scheme begs exactly the question it was designed to an- 
swer (i.e., how can sequential learning be modeled in connectionist net- 
works?). 

A final difficulty with the Rumelhart scheme concerns the nature of the 
context patterns. The scheme yields little or no interference only given 
the assumption that context patterns are essentially nonoverlapping. 
However, it is not clear that this assumption is reasonable. To the extent 
that context representations specify such information as the time at which 
learning occurred, the nature of the surroundings, and so forth, then con- 
text patterns for two learning episodes that are similar with respect to 
these factors, such as the patterns for A-B and A-C lists in an RI experi- 
ment, would presumably have considerable overlap. If various context 
patterns have substantial overlap, however, then learning in one context 
may alter many of the weights established during learning in earlier con- 
texts, and so may disrupt the earlier learning. 

For these reasons, we suggest that at least in its present form Rumel- 
hart’s tentative proposal does not constitute a solution to the interference 
problem.* 

“D. E. Rumelhart (personal communication, November 1988) emphasizes that his pro- 
posal for reducing interference has not been finalized, but rather continues to evolve. Thus, 
the points we have made should be interpreted as applying to a particular version of the 
Rumelhart scheme; subsequent versions might conceivably resolve some of the problems 
we have discussed. 
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IX. Implications and Future Directions 

Our analysis of the causes of interference in connectionist networks 
implies that in any connectionist model in which new learning may alter 
connection weights involved in representing previously learned informa- 
tion, there is a potential for interference; the new learning may disrupt 
the old learning. Further, the simulations we have presented suggest that 
in at least some circumstances the interference is catastrophic, far more 
severe than we would expect from human learners. 

These findings suggest that maintenance of previously acquired infor- 
mation during new learning may pose a serious challenge for current 
forms of connectionist models and should be a major consideration in 
work aimed at further developing the connectionist framework. At this 
point it is an open question whether the interference problem can be re- 
solved without substantially altering the essential characteristics of cur- 
rent forms of connectionist models, and without giving up attractive fea- 
tures such as the ability to generalize. 

A more specific implication of our results is that in the development of 
particular models careful attention must be given to the way in which 
learning is modeled. Because network performance varies drastically as 
a function of how training is conducted, serious efforts must be made to 
reproduce the manner in which human learners encounter material to be 
learned. 

The present findings also point to several issues that need to be exam- 
ined further in subsequent work on interference in connectionist net- 
works. Two of these issues are discussed briefly in the following sections. 

A. REHEARSAL OF PREVIOUSLY LEARNED INFORMATION 

First, it will be important to consider the extent to which people actu- 
ally learn sequentially in various situations, and the extent to which pre- 
viously learned material may be rehearsed in the course of learning new 
material. In this context there are a number of interesting issues to ex- 
plore. For example, work by Hinton and Sejnowski (1986) and Hinton 
and Plaut (1987) suggests that rehearsing some previously learned infor- 
mation during new learning may to some extent protect from disruption 
not only the rehearsed items, but other previously learned items as well. 
We have found with our arithmetic model, however, that the problems 2 
+ 1 and I + 2, which were learned during training on the ones problems, 
showed temporary but drastic disruption when training on twos problems 
began, even though training on 2 + 1 and 1 + 2 continued uninterrupted 
when the twos problems were introduced. Additional results from both 
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the arithmetic and RI models indicate that even if training on all of the 
previously learned information continues during acquisition of new infor- 
mation, the old information nevertheless shows this temporary dis- 
ruption. 

The temporary disruption phenomenon may be seen clearly in our PQR 
network. Figure 17 shows what happens when the network is first trained 
on pattern I alone, and then on patterns 1 and 2 concurrently. When pat- 
tern 2 is introduced, the weight configuration is quickly pulled out of the 
pattern 1 solution space, and then moves toward the overall solution 
space. Once pattern I is well learned, it no longer pulls the weight config- 
uration very strongly. When pattern 2 is introduced it pulls strongly, and 
as a result the configuration is pulled out of the pattern 1 solution space. 

B. INTERFERENCE UNDER CONCURRENT TRAINING CONDITIONS 

We have discussed the interference issue in the context of situations 
involving sequential learning, because these situations present the issue 
in its clearest form. However, the points we have developed, and the 
conclusions we have drawn, may also apply to many situations in which 
learning is more concurrent. 

Consider as an example Seidenberg and McClelland’s (in press) model 
of single-word reading, in which a connectionist network maps ortho- 
graphic representations of words onto phonological representations. 
Seidenberg and McClelland present results from simulations in which a 

Fig. 17. Movement of the weight configuration over learning trials with training on pat- 
tern I, followed by concurrent training on patterns I and 2. 
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network was trained concurrently on a corpus of 2,897 words, using the 
back-propagation learning algorithm. Words were presented to the net- 
work according to their frequency in the language, such that high-fre- 
quency words were presented more often than low-frequency words. 
However, as is inevitable with a limited corpus of words, the training 
procedure did not fully reflect the range of frequencies with which words 
occur in the experience of a human reader. For example, words with a 
frequency of 1 per million were presented to the network far more often 
than once every million words. On the basis of the simulation results, 
Seidenberg and McClelland (in press) argue that their model captures a 
variety of phenomena. 

The interference issue arises with respect to the Seidenberg and 
McClelland model in the following way: After a human reader encounters 
a word, many other words may be encountered before the word is seen 
again. This is especially true of low-frequency words like yacht, which 
human readers encounter on average less than once in every hundred 
thousand words. 

In the Seidenberg and McClelland model the weight adjustments that 
occur whenever a word is presented to the network have the potential to 
disrupt the representations of other words. Thus, one may ask whether 
in a network of this sort a low-frequency irregular word such as yacht 
could ever be learned and retained when so many weight adjustments 
occur between successive presentations of the word. Seidenberg and 
McClelland’s simulation with a 2,897-word corpus cannot answer this 
question, because the number of different words the network encoun- 
tered and the number of words intervening between two successive pre- 
sentations of a low-frequency word were vastly smaller than for human 
learners. 

Thus, the interference phenomena we have discussed in this chapter 
raise concerns about the conclusions that can be drawn from simulations 
involving toy versions of the tasks humans perform. Minsky and Papert 
(1988) raise similar concerns on different grounds in the new edition of 
their classic book Perceptrons. 

X. Concluding Remarks 

In concluding, we must acknowledge a limitation of the work we have 
presented. In order to determine the extent to which interference repre- 
sents a problem for connectionist models, we need to be able to specify 
the conditions under which interference will be more severe than ex- 
pected from human learners, and the conditions in which interference 
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would take on more reasonable proportions. However, at present we are 
not in a position to do this. Our analysis of the causes of interference 
implies only that at least some interference will occur whenever new 
learning may alter weights involved in representing old learning, and our 
simulation results demonstrate only that interference was catastrophic in 
some specific networks. 

We could offer some rough generalizations concerning factors affecting 
the severity of interference: For example, other things being equal, the 
greater the amount of new learning, the greater the disruption of old learn- 
ing. However, we are far from being able to delineate systematically the 
factors that determine the severity of interference, or the ways in which 
these factors interact to produce a particular level of interference in a 
particular network. Perhaps this somewhat unsatisfying state of affairs 
reflects our own limitations. Perhaps however, it has something to say 
about the current level of development of the connectionist framework. 

In its present form connectionist modeling attempts to explain human 
cognitive functions in terms of networks that are themselves poorly un- 
derstood. Thus, when a network behaves in a particular way the reasons 
may not be entirely clear. One often cannot be sure of the extent to which 
the network’s performance crucially depends upon particular parameter 
settings, or on some more or less arbitrary choices that had to be made 
in developing a simulation. Similarly, it may be impossible to predict what 
effects particular modifications of a network would have. Thus, in the 
extreme one may be limited to drawing conclusions that apply only to 
particular networks with particular parameter settings, particular num- 
bers of hidden units, and so forth. 

Progress has also been impeded by a relative lack of attention within 
the connectionist framework to questions concerning the nature of the 
overall cognitive architectures within which particular networks fit. In 
the absence of clearly articulated claims about a network’s place in a 
larger system one cannot readily answer such questions as, What compu- 
tations must the network be able to carry out?; How accurate must the 
network’s output be to allow a correct overt response to be generated?; 
and, What constraints can be placed on the form that inputs to the net- 
work may take? Even in the Seidenberg and McClelland (in press) reading 
model, which is perhaps the most explicit connectionist model with re- 
spect to specifying the overall architecture within which the implemented 
network fits, some significant questions remain unanswered. For exam- 
ple, the mechanisms that transform the network’s outputs into overt re- 
sponses are not merely unimplemented, but in fact entirely unspecified. 
As a result, it is unclear just how closely and in what ways the network’s 
outputs must correspond to the correct outputs to allow a correct overt 
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response to be generated. Thus, for example, if the network generates a 
not entirely correct output for a low-frequency word, there may be no 
basis for deciding whether the output is sufficiently accurate to allow gen- 
eration of the correct overt response. Similarly, in our own simulations 
the absence of a framework within which we could motivate specific 
claims about the generation of overt responses led to our use of four dif- 
ferent, and essentially arbitrary, performance measures. 

In our view, prospects for progress in connectionist modeling hinge 
critically upon elaboration of the connectionist framework along at least 
two fronts. First, as Minsky and Papert (1988) have argued, empirical 
exploration must be accompanied by formal analysis of the behavior of 
connectionist networks. Second, attention must be directed toward artic- 
ulating overall cognitive architectures within which particular networks 
tit. Some encouraging preliminary steps have been taken, but it remains 
to be seen whether connectionism will emerge as a productive framework 
for modeling human cognition. 
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