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Abstract

The idea that there are multiple learning systems has become increasingly influential 

in recent years with many studies providing evidence that there is both a quick, 

similarity, or feature-based, system, and a more effortful, rule-based system. A smaller

number of imaging studies have also examined whether neurally dissociable learning 

systems are detectable. We further investigate this by employing for the first time in 

an imaging study a combined positive and negative patterning procedure originally 

developed by Shanks and Darby (1998). Unlike previous related studies employing 

other procedures, rule generalization in the Shanks-Darby task is beyond any simple 

non-rule-based (e.g., associative) account. We found that rule- and similarity-based 

generalization evoked common activation in diverse regions including the prefrontal 

cortex and the bilateral parietal and occipital lobes indicating that both strategies 

likely share a range of common processes. No differences between strategies were 

identified in whole-brain comparisons but exploratory analyses indicated that rule-

based generalization led to greater activation in the right middle frontal cortex  than 

similarity-based generalization. Conversely, the similarity group activated the anterior

medial frontal lobe and right inferior parietal lobes more than the rule group did.  The 

implications of these results are discussed.
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The ability to generalize information we have previously learned to novel stimuli is 

fundamental for successful functioning in our everyday environment.  An enduring 

and contentious question is whether this is achieved by separable learning systems 

(e.g., Ashby et al., 1998; Brooks, 1978) or just a single system (e.g., Newell et al., 

2011; Nosofsky & Kruschke, 2002). Multiple-systems accounts typically posit the 

existence of a non-deliberative (Wills et al., 2013) or non-analytic (Brooks, 1978) 

process, that is automatic (Smith et al., 1998), similarity-based (Milton, Longmore, & 

Wills, 2008), and driven by associative (McLaren, Green, & Mackintosh, 1994) or 

implicit (Ashby et al., 1998) processes. A second system is assumed to be deliberative

(Wills et al., 2013) or analytic (Brooks, 1978),  controlled (Smith et al., 1998), rule-

based (Ashby et al., 1998), and requiring of  extensive cognitive resources (Wills et 

al., 2015). In this article, we refer to these two systems as similarity and rule-based. 

Much of the evidence relevant to this debate has come from behavioral or 

comparative studies. Some of this evidence is consistent with multiple learning 

systems accounts (e.g., Allen & Brooks, 1991; Ashby & Maddox, 2011; Kemler 

Nelson, 1984; Maes et al., 2015; Rips, 1989), while others maintain this evidence can 

be more parsimoniously explained by a single system (e.g., Edmunds et al., 2015; 

Newell et al., 2013; Stanton & Nosofsky, 2013; Wills, Inkster, & Milton, 2015). 

Consequently, there is currently no clear consensus on this issue. A complimentary, 

and currently relatively underexplored, approach is to use brain imaging to examine 

whether there are neurally dissociable learning systems. One such fMRI study, loosely

based on earlier behavioral work by Allen and Brooks (1991), was conducted by 

Koenig et al. (2005) who asked participants to classify a set of cartoon animals 

differing on four stimulus dimensions (e.g., legs, neck type). Participants in the rule 

condition were informed of a complex rule (category membership requires the 
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instance to possess three out of four characteristic features for that category). In the 

similarity condition participants were not told the rule but instead asked to make a 

quick decision using their first impressions about which category a particular instance 

was more similar to. Both groups were provided with trial-by-trial feedback. Koenig 

et al. found that similarity, compared to rule-based, categorization recruited greater 

activation in bilateral temporo-parietal regions as well as bilateral anterior prefrontal 

regions (BA 10). Conversely, the rule-based condition led to greater activation than 

the similarity condition in the left frontal lobes, left inferior parietal lobes, and the 

right superior parietal lobes. One feature of this study, however, is that it is not clear 

exactly what strategy participants in the similarity condition are employing, which 

makes interpretation of the imaging results more complicated. Specifically, Koenig et 

al. assume that participants are using a similarity-based approach that presumably 

requires the use of most, if not all, of the dimensions. While this is plausible, an 

alternative explanation is that participants in the similarity condition are using a 

simpler rule-based approach, such as a single dimension-plus-exception strategy (e.g.,

Ward & Scott, 1987) which could also result in the level of performance obtained. In 

this latter case, participants in the similarity condition are using fewer of the 

dimensions than those in the rule condition.

In a study somewhat more closely based on the work of Allen & Brooks 

(1991), Patalano et al. (2001) also observed activation in bilateral frontal cortex in the 

rule-based condition that was not present in the similarity condition. Occipital lobe 

and cerebellum activation was prevalent in both conditions. However, significant 

neural differences between the groups were relatively restricted, even though one-

tailed tests were used. For example the greater frontal lobe activation in the rule than 

the similarity condition was only marginally significant (p = .06).
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Using a slightly different approach - the criterial attribute procedure, based on 

earlier behavioral work by Kemler Nelson (1984) - Tracy et al. (2003) investigated the

neural correlates of family resemblance categorization (assumed to use the similarity 

system) and unidimensional categorization (assumed to employ the rule system). 

Similar to the category structure employed by Koenig et al. (2005),  a family 

resemblance category (e.g., Rosch & Mervis, 1975) possessed a number of 

characteristic but not defining features – an item did not have to possess any single 

feature or features as long as it possessed enough characteristic features (3 out of 4 

typical features) of that category. In contrast, a unidimensional category was based 

around a single defining feature that the authors assumed required use of the rule-

based system.  Tracy et al. (2003) found greater activation in the extrastriate cortex 

(BA’s 18 and 19) and the left cerebellum for family resemblance (similarity-based) 

categorization than unidimensional categorization, while unidimensional 

categorization led to greater activation in bilateral frontal lobes than family 

resemblance categorization. However, recent behavioral model-based analysis 

suggests that family resemblance categorization in the criterial attribute procedure is 

often due to the use of a single non-criterial dimension, which is a strategy not 

detectable by the standard analysis employed by Tracy et al. (for a detailed discussion,

see Wills et al., 2015). This again makes interpretation of the neural differences 

observed more difficult.

 In contrast to Tracy et al.'s (2003) conclusions, Milton, Wills, and Hodgson 

(2009) proposed that both family resemblance and unidimensional categorization are 

the result of a single rule-based system, with family resemblance categorization 

requiring a more complex, multi-dimensional, rule than unidimensional categorization

(see also Wills et al., 2013). Consistent with their proposal, Milton et al. found 
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extensive common activation between family resemblance and unidimensional 

categorization including the dorsolateral frontal cortex and the anterior cingulate. The 

most notable difference between groups was the greater right ventrolateral frontal 

cortex activation for family resemblance than unidimensional categorization, which 

the authors proposed indicated the greater working memory resources required to 

employ a multidimensional rule.

A different approach was taken by Nomura et al. (2007), who conducted an 

fMRI study based on the influential COVIS framework (Ashby et al., 1998); 

participants viewed a series of Gabor patches and learned either a rule-based (RB) 

task that possessed an easily verbalizable, unidimensional rule ("thinner lines belong 

in category A, thicker lines in category B") which is assumed to encourage use of the 

explicit system or an information-integration (II) task which requires participants to 

combine information from two unrelated stimulus dimensions. The optimal II 

category structure is assumed to be difficult or impossible to verbalize, which should 

encourage use of COVIS's implicit system. In line with COVIS's predictions, 

dissociable neural activation was found with the medial temporal lobes (MTL) more 

activated in RB compared with II learning, and the caudate body more engaged in II 

than RB learning. 

While intriguing,  the category separation (i.e., the mean distance between 

category items as plotted in stimulus space divided by the within-category variance 

along the direction of the comparison) was smaller in the RB than the II condition and

the selective attention demands were greater in the RB than the II condition (as only 

one of the two dimensions was relevant to learn the RB structure while both were 

required for the II structure)  meaning that non-essential differences could have been 

driving the neural dissociations. In a recent study conducted by Carpenter, Wills, 
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Benattayallah, and Milton (in press) when these non-essential differences between the

RB and II conditions were better equated (by comparing a conjunctive RB structure 

against a standard II structure), the pattern of results observed by Nomura et al. (2007)

did not emerge and instead there was extensive common overlap between the 

conditions. Furthermore, the II condition evoked greater activation in the MTL than 

the RB condition, which may reflect the greater memory demands in the II condition 

where no rule was readily available. In another related study, albeit one which used 

very different stimuli (the stimuli varied on rectangle height and width of an ellipse), 

Milton and Pothos (2011) compared activation between a RB task and an II-like task 

but found minimal neural dissociations and instead found extensive overlap of 

activation suggesting that both groups were using similar neural processes.

Finally, Grossman et al. (2002), using a modified version of Rips's (1989) 

classic procedure gave participants a description of an item such as "a round object 2 

inches in diameter" who had to assign it to either the category of "quarter" or "pizza". 

The description is more similar in size to a quarter than a pizza but a pizza has a 

variable diameter (so could, in principle, be 2 inches) while a quarter does not (so it 

cannot be 2 inches). Participants who choose the quarter category were assumed to be 

making a similarity judgment while those who assign it to the pizza category are 

following a rule. Grossman et al. found that there was greater recruitment of the left 

dorsolateral prefrontal cortex for rule than similarity responses while the right inferior

parietal lobe, which they noted is involved in overall feature configuration (Wilkinson

et al., 2002), was activated more for similarity- than rule-based responses. However, 

Nosofsky and Johansen (2000) have demonstrated that the results from this procedure 

can be accommodated by a simple, single-process, exemplar-based learning system 

without requiring qualitatively distinct systems for the different strategies. 
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We investigate whether there are neurally separable rule and similarity 

generalization systems from a different angle using a procedure, based on Shanks and 

Darby's (1998) Experiment 2, which has not previously been examined using brain 

imaging. The design of this experiment is shown in Figure 1. Participants took the 

role of an allergist who had to determine whether the meals a hypothetical patient, Mr 

X, eats will cause an allergic reaction or not. Letters in Figure 1 stand for particular 

foods (e.g., pasta or eggs), + indicates that an allergic reaction will develop and - that 

no allergic reaction will occur. During training, participants learn two complete 

negative patterning problems (e.g., A+, B+, AB-) and two complete positive 

patterning problems (e.g., C-, D-, CD+). Critically, however, there are also four 

incomplete patterning problems - for example, participants are trained on I+ and J+ 

but not on the outcome of I and J combined and trained that eating KL together leads 

to an allergic reaction but not what happens when K and L are eaten separately. 

During the test phase, as well as being tested on items they studied during training 

(e.g., I+, J+ and KL+), participants have to generalize the knowledge they have 

obtained to what will henceforth be referred to as the critical items (e.g., IJ, K, and L; 

shown in bold in Figure 1) and are provided no feedback on their responses. 

In the case of IJ, if participants are using a similarity-based strategy then they 

should predict an allergic reaction as it is similar to I and J, both of which lead to an 

allergic reaction alone. Equally, when presented with K or L alone they should predict

an allergic reaction because they are similar to KL which results in an allergic 

reaction. In contrast, if participants have learned the "opposites" rule from training - 

single foods predict the opposite to their compounds - they can use this to generalize 

to novel items. In this case, IJ should lead to no allergic reaction because it is the 

opposite outcome to I or J when presented alone. Similarly, K or L, when presented 
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separately, should lead to no allergic reaction as this is the opposite to KL which 

resulted in an allergic reaction. Shanks and Darby (1998) found that participants with 

high accuracy during training produced more rule-based responses for these critical 

test items than participants with lower accuracy. They explained this by postulating 

that there is a transition from a similarity to a rule-based approach, which can only be 

used when the basic associations have been acquired (see also Wills et al., 2011). 

While using a novel procedure to compare the neural correlates of the 

purported rule and similarity systems is of value in itself, the Shanks-Darby procedure

has some particular advantages that make it well equipped to provide new insight into 

this debate. First, both similarity and rule-based responses require utilizing the same 

number of stimulus dimensions. This is in contrast to many of the studies described 

above (e.g., Milton & Pothos, 2011; Milton et al., 2009; Nomura et al., 2007; Tracy et 

al., 2003) where the number of stimulus dimensions utilized in the similarity 

condition seem unlikely to be the same as in the rule conditions (it may either be 

more, as is commonly assumed, or sometimes less, depending on how participants 

approach the task in the similarity condition). Across a range of different procedures, 

categorizing by a larger number of dimensions is more effortful than categorizing by 

fewer dimensions (e.g., Edmunds et al., 2015; Milton & Wills, 2004; Wills et al., 

2015). It is plausible that this could be driving the difference in neural activation 

between the groups, rather than indicating the involvement of qualitatively different 

systems. A further advantage of employing the Shanks-Darby procedure is that a full 

explanation of the "opposites" rule generalization is commonly thought to be beyond 

published associative accounts (see Maes et al., 2015 for a further discussion) 

allowing clear inferences to be drawn. This does not appear to be the case for the 

other procedures described above. For instance, non-rule based accounts, such as 
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Kruschke’s (1992) ALCOVE model, which have a mechanism for dimensional 

attention are able to account for the purported rule-based classification in these tasks.

In summary, then, the present study uses a novel approach to investigate the 

neural differences between rule-based and similarity-based generalization. We 

predicted, based on previous behavioral and comparative work with this procedure 

(Maes et al., 2015; Wills et al., 2011), that we would observe neural differences 

between the generalization strategies. In particular, we hypothesized that there would 

be greater frontal lobe activation in the rule-based condition than the similarity-based 

condition (e.g., Grossman et al., 2002; Milton et al., 2009; Nomura & Reber, 2008; 

Patalano et al., 2001). Our prediction for which regions would be implicated in 

similarity-based generalization was more tentative given the greater heterogeneity in 

previous studies but viable options a priori included the right inferior parietal lobes 

(Grossman et al., 2002), and the occipital lobes (e.g., Nomura et al., 2007; Patalano et 

al., 2001)/ extrastriate cortex (Tracy et al., 2003).

Method

Participants

62 right-handed participants were recruited from the University of Exeter participant 

pool. Participants were either volunteers, received course credits, or were paid £7. 

Participants all gave informed consent according to procedures approved by the 

Psychology Ethics Committee, University of Exeter. A learning criterion was set as 

significantly above chance accuracy in the second half of training to ensure that all 

participants included in the analyses had clear evidence of learning. Without this, one 

could not reasonably expect true generalization to occur. This resulted in the exclusion

of 10 participants. A further 14 participants did not show clear evidence of  either 
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rule- or similarity-based generalization - defined as significantly above chance 

(64.6%) strategy-consistent responding for the critical test trials. These participants 

who did not adopt a clear strategy would likely obscure any differences that emerged 

between participants who did demonstrate clear rule or similarity generalization so we

consequently excluded them from all the principal analyses. We, however, consider 

the test phase data for these 14 participants who used a mixture of rule and similarity 

consistent responses separately. This left 38 participants in total for our principal 

analyses; 24 rule-based responders and 14 similarity-based responders. This trend for 

a greater proportion of rule responders was not significant, χ2 (1) = 2.632, p = .105.

Stimuli

The stimuli (food names) were identical to those used in Experiment 2 of Shanks and 

Darby (1998). For half of the participants the food names A-P (see Figure 1) were 

cheese, garlic, milk, mushrooms, seafood, red meat, olive oil, coffee, banana, eggs, 

orange squash, bread, avocado, peanuts, pasta, and chocolate. For the other half, the 

foods assigned to A/B were exchanged for those assigned to C/D and likewise for E/F 

and G/H, I/J and K/L, and M/N and O/P. 

Procedure

Prior to entering the scanner, participants were asked to take the role of a food 

allergist and to learn when Mr. X would develop an allergic reaction after eating a 

meal containing certain foods. 29 participants were additionally provided with 

instructions outlining the rule (e.g., “If Mr. X is allergic to a food when it is presented 

on its own, he won't be allergic to it when it is presented together with another food. 

Conversely, if Mr X is not allergic to a food when it is presented on its own then he 
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will be if it is presented in combination with another food”) and 33 participants were 

provided with instructions designed to encourage a similarity-based approach (“When

making a response, please use your intuition as to what you feel is the correct answer

based on what you have previously seen"). The rationale behind this was to facilitate 

obtaining a sufficient number of participants who consistently categorized the critical 

trials by either a similarity or a rule-based approach rather than to look at the neural 

effects of differing instructions per se. In practice, however, this instructional 

manipulation had no significant impact on the strategy used (we suspect, in hindsight, 

that it would have been more effective if, like the training items, it had been presented

inside the scanner in the same context as where learning took place) and will, 

consequently, not be discussed further. 

Visual stimuli were presented on a back-projection screen positioned at the 

foot end of the MRI scanner and viewed via a mirror mounted on a head coil. Button-

press responses and reaction times were measured using a fiber-optic button box. E-

Prime (Psychological Software Tools, 2002, http://www.pstnet.com) was used for the 

presentation and timing of stimuli and collection of response data. 

In the training phase, participants received six blocks of trials, divided into 

two scanning runs of three blocks, with each of the 18 training stimuli (see Figure 1) 

presented twice in each block in a random order. Each trial began with a white screen 

lasting a random interval between 500-4000ms, before a black fixation cross was 

presented in the middle of the screen for 250ms. A meal, food names presented in 

black font, was then presented in the middle of a white screen for 3000ms during 

which time participants indicated whether it would lead to an allergic reaction (by 

pressing the left button box key) or would not lead to an allergic reaction (by pressing 

the right button box key). Following this, feedback (“Correct”, in blue or “Incorrect”, 
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in red) was presented for 500ms. For participants who failed to respond when the 

meal was presented, the message “Timeout!!" (in red) appeared instead. The next trial 

then immediately began. At the end of each block of 36 trials, the average accuracy on

that block was displayed on the screen for 12 seconds, before the next block began.  

The test phase included all 24 stimuli, comprising the 18 training stimuli plus 

the 6 critical generalization stimuli (shown in bold in Figure 1). The 18 training 

stimuli were presented once in each block while the 6 critical trials were each 

presented twice leading to 30 trials in each of the four blocks. Stimuli were presented 

in a random order. The intra-trial structure was identical to the training phase except 

that after a response a 500ms blank screen appeared rather than feedback. If no 

response was made, a time out message appeared as in the training phase.

fMRI Data Acquisition

Images were collected using a 1.5-T Phillips Gyroscan magnet equipped with a Sense 

coil. A T2*-weighted echo planar sequence was used (Tr = 3000ms, Te = 45ms, flip 

angle = 90˚, 32 transverse slices, FOV = 240mm, 3.5x2.5x2.5mm). The training phase

comprised two runs of 240 scans and the test phase one run of 260 scans. 5 dummy 

scans were performed prior to the start of each stimulus sequence. Standard 

volumetric anatomical MRI was performed after functional scanning by using a 3-D 

T1-weighted pulse sequence (Tr = 25ms, Te = 4.1ms, flip angle = 30˚, 160 axial 

slices, 1.6x0.9x0.9mm).

Analysis of fMRI data

Analyses were carried out using SPM8 software (www.fil.ion.ucl.ac.uk/spm). 

Functional images were corrected for acquisition order, realigned to the mean image 
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and resliced to correct for motion artifacts. The realigned images were coregistered 

with the structural T1 volume and the structural volumes were spatially normalized. 

The spatial transformation was applied to the realigned T2* volumes which were 

spatially smoothed using a Gaussian kernel of 8mm full-width half maximum. Data 

were high-pass filtered (1/128 Hz) to account for low frequency drifts. The BOLD 

response was modeled by a canonical hemodynamic response function. 

All analyses were conducted using the general linear model. In the individual 

participant models, the critical trials that were consistent with their overall favored 

strategy (i.e., rule- or similarity-based generalization) were included as one regressor, 

while critical trials inconsistent with this approach were a second regressor. The 

familiar items were partitioned into correct and incorrect responses. The duration of 

each event was modeled as the participant’s reaction time for that trial (see Grinband 

et al., 2008, for the advantages of using this "variable epoch" approach). Time outs 

were included as a fifth regressor of no interest. The six head movement parameters 

were included as additional covariates. Contrasts comparing strategy-consistent 

responses for the critical trials were subtracted against the implicit baseline (the 

intervals between the five event types listed above; cf., Milton et al., 2009; Tracy et 

al., 2003, for a similar approach) and correct familiar trials were likewise compared to

the implicit baseline. These comparisons were then included in random-effects 

analyses. For these analyses, participants were divided into those who provided clear 

evidence of either similarity or rule-based generalization (i.e., significantly above 

chance strategy-consistent responding on the critical generalization trials).

Whole-brain analyses were completed using a combined statistical threshold 

of p<.001 (uncorrected) and a threshold of 100 contiguous voxels, which together 

produce an overall corrected threshold of p<.05. These values were estimated using 
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3dClustSim as implemented in the AFNI toolbox (http://afni.nimh.nih.gov/afni/). For 

this, we used a smoothness estimate of 10.1x10.1x9.6 mm (this was a group level 

estimate calculated in SPM8 using the group residuals from the general linear model, 

e.g., Kiebel et al., 1999).In addition, to measure common activation between rule-

based and similarity-based participants, conjunction analyses were performed. To do 

this, the relevant contrasts were combined using a logical ‘and’ function through the 

minimum statistic to the conjunction null hypothesis (MS/CN; Nichols et al., 2005) 

technique implemented in SPM8. Both contrasts were again conducted with a 

combined threshold of p<.001 (uncorrected) and a cluster threshold of 100 contiguous

voxels. Note that this analysis is conservative because it reveals only those regions 

significantly activated for both the rule (p<.05, corrected) and the similarity (p<.05, 

corrected) conditions. 

After performing the whole-brain analyses we decided to conduct more 

exploratory region of interest (ROI) analyses (using the WFU Pickatlas, e.g., 

Maldjian, Laurienti, Burdette, & Kraft, 2003) when directly comparing rule and 

similarity generalization. These post-hoc ROI analyses were based on our a priori 

predictions of regions we thought would be differentially involved between strategies 

and comprised the prefrontal cortex (e.g., Milton et al., 2009; Milton & Pothos, 2011),

the occipital lobes/extrastriate cortex (BAs 18 and 19; e.g., Nomura et al., 2007; Tracy

et al., 2003), and the right inferior parietal lobes (Grossman et al., 2002). While these 

exploratory analyses should accordingly be taken with some caution, we believe that 

they help to characterize better the nature of our results, which is particularly 

important given that this is the first imaging study of the Shanks-Darby procedure. 

For these analyses, we used thresholds of p<.001 and 64 contiguous voxels which 

together produce an overall corrected threshold of p<.05, as estimated by 3dClustSim.
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Normalized MNI space coordinates were transformed to Talairach space 

(http://imaging.mrccbu.cam.ac.uk/imaging/MniTalairach) to establish activation sites 

as per the atlas of Talairach and Tournoux (1988). 1

Results

Behavioral analyses

Training phase

The proportions of timeouts were low in both the rule (M = .015, SD = .021) and 

similarity (M = .020; SD = .018) groups and there was no significant difference 

between them, t (31.1) = .829, p = .413. One sample t-tests revealed that the average 

performance in the second half of training (blocks 4-6) was significantly above 

chance for both the rule-based (M = .872; SD = .092; t (23) = 19.647, p <.001) and 

the similarity-based (M = .739; SD = .088; t (13) = 10.217, p<.001) groups, although, 

as in Shanks and Darby (1998), the rule group had higher accuracy than the similarity 

group, t (28.6) = 4.409, p < .001. Median reaction times (RT) were longer in the 

similarity group (1291 ms) than in the rule group (1010 ms), t(21.8) = 3.874, p < .001.

Test phase

The proportions of timeouts were again low (rule group: M = .012; SD = .016; 

similarity group: M = .026; SD = .031) and there was no significant difference 

between conditions, t(17.2) = 1.608, p = .126. Average performance for the familiar 

items (i.e., those seen during the training phase) across blocks is displayed in Figure 

2a. The average accuracy (collapsed across blocks) for both the rule (M = .923; SD = .

083, t (23) = 25.111, p<.001) and similarity (M = .763; SD = .129; t (13) = 7.616, p 

<.001) groups was significantly above chance, although as in the training phase, rule-
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based participants had higher accuracy than similarity-based participants, t (19.3) = 

4.151, p < .001. Median RTs were non-significantly longer in the similarity group 

(1208 ms) than the rule group (1060 ms), t(18.4) = 1.78, p = .09. 

Of particular importance, given our interest in generalization strategies, both 

the rule and similarity groups used their preferred strategy significantly above chance 

levels (rule group, M = .862; SD = .106, t (24) =  16.691, p<.001; similarity group, M 

= .825; SD = .095, t (13) = 12.868, p <.001) for the critical test items (see Figure 2b), 

and there was no significant difference in strategy-consistent responding between 

groups, t (29.3) = 1.074, p = .292, with substantial evidence for the null, BF = 0.25.2  

Median RTs were non-significantly shorter in the similarity group (1119 ms) than the 

rule group (1294 ms), t(22.3) = 1.86, p = .08. 

Although participants were classified on the basis of being either rule-

consistent or similarity-consistent collapsed across all critical items it does not 

necessarily follow that both the critical compound and element stimuli show this 

pattern. We therefore consider generalization to compound and element stimuli 

separately as in past work (e.g., Shanks & Darby, 1998; Wills et al., 2011). The mean 

probability of predicting an allergic reaction to the critical compound stimuli (i.e., IJ 

and MN) is shown in Figure 3a. As expected, there was a significant interaction 

between strategy used and stimulus type, F(1,36) = 382.02., p <. 001. No other main 

effects or interactions were significant (Ps >.25). The rule group showed rule-

consistent generalization to compounds, t(23) = 25.87, p < .001,  while the similarity 

group showed similarity-consistent generalization, t(13) = 8.21, p < .001. Median RTs

were non-significantly shorter in the similarity group (1313 ms) than the rule group 

(1457 ms), F(1, 36) = 1.29, p = .26. No other effects were significant (Ps > .12). 
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Figure 3b shows the probability of predicting an allergic reaction to the critical

element stimuli (i.e., K/L and O/P). There was again a significant interaction between 

strategy used and stimulus type, F(1,36) = 201.80, p <  . 001. No other main effects or

interactions were significant (Ps > .4). The rule group showed rule-consistent 

generalization to elements, t(23) = 11.75, p < .001, while the similarity group showed 

similarity-consistent generalization, t(13) = 9.43, p < .001.  Median RTs were non-

significantly shorter in the similarity group (1123 ms) than the rule group (1289 ms), 

F(1,36) = 3.96, p = .054. No other main effects or interactions were significant (Ps > .

06).

Imaging analyses

Training

A contrast comparing all trials and groups against the implicit baseline revealed 

extensive activation including diverse regions of the bilateral prefrontal cortex, 

bilateral parietal lobes and bilateral occipital lobes (see Figure 4a). We then compared 

performance on early training (Blocks 1-3) to late training (Blocks 3-6) for all trials 

and participants. A large cluster including the caudate head and body, which have 

been extensively linked to category learning (e.g., Seger, 2008), and the thalamus, 

was activated more early in training than later in training (peak voxel: x = 16, y = -32,

z = 16). Conversely, the right inferior frontal gyrus (peak voxel: x = 24, y = 25, z = -5)

and the anterior cingulate /medial prefrontal gyrus (peak voxel: x = 8, y = 30, z = 22) 

were activated more late in training than early in training.

For the rule group, comparing correct responses against the baseline revealed 

extensive activation including in the prefrontal cortex, parietal lobes, and the occipital

lobes (Figure 4b). Similar regions were recruited by the similarity group (Figure 4c). 
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This extensive common overlap of activation was confirmed by a conjunction 

analysis (Figure 4d; Table 1). When directly comparing the groups, no regions were 

more activated by the similarity group than the rule group; however, the bilateral 

posterior cingulate/precuneus (cluster size: 166 voxels) was engaged more in the rule 

group than the similarity group (Figure 5a). An exploratory analysis of this rule 

-similarity contrast, with more liberal thresholds (p<.001, 25 contiguous voxels), and 

which should consequently be taken with caution, revealed two clusters in right 

middle frontal gyrus (1st cluster, peak voxel x=32, y = 24, z = 15, cluster size: 41 

voxels; 2nd cluster, peak voxel, x = 28, y = 23, z = 39, cluster size: 50 voxels). 

No differences emerged between groups when considering just the first half of

training. When looking at the second half of training alone, there were again no areas 

more activated by the similarity group than the rule-based group. However, the 

bilateral posterior cingulate/precuneus was again activated more by the rule group 

than the similarity group and the right anterior cingulate/ medial frontal gyrus was 

also engaged (see Figure 5b).

Test

Critical trials (Generalization)

A number of brain regions were activated by similarity responders including bilateral 

inferior and superior parietal lobes, right middle occipital gyrus, and left medial 

frontal gyrus (Figure 6a). Rule-based responders engaged the left superior parietal 

lobes, bilateral inferior parietal lobes, bilateral middle frontal gyrus, left medial 

frontal gyrus, right inferior frontal gyrus and bilateral occipital lobes (Figure 6b). A 

conjunction analysis (see Figure 6c; Table 2) revealed extensive common overlap of 

activation between the similarity- and rule-based participants which included the left 
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superior parietal lobes, bilateral inferior parietal lobes, bilateral medial frontal gyrus, 

left middle frontal gyrus and the bilateral occipital gyrus. 

Next, we directly contrasted brain activation between the similarity and rule 

groups. In contrast to the extensive common activation, no differences were identified

in whole-brain analyses. However, in the exploratory ROI analyses (comprising the 

prefrontal cortex, right inferior parietal lobes, and bilateral occipital lobes, with 

thresholds of p<.001 and 64 contiguous voxels) we found that the right middle frontal 

gyrus (see Figure 7a; BA 9) was activated more for the rule group than the similarity 

group (in the same region as identified by the exploratory analysis documented in the 

rule - similarity comparison for the training phase). In contrast, we observed greater 

activation in the anterior medial frontal lobes (BA 10) and the right inferior parietal 

lobes (BA 40) for the similarity group compared to the rule-based group (Figure 7b). 

Element vs compound critical stimuli

As a supplementary question, we assessed whether there were activation differences 

in the element (i.e., K/L and O/P) and compound (i.e., IJ and MN) critical trials. As 

before, only trials that were consistent with the preferred strategy of the participants 

(i.e., rule- or similarity-based) were included. For the rule group, there was greater 

activation in the occipital lobes/cerebellum and the left caudate body for the 

compound stimuli than for the element stimuli (see Figure 8a). In contrast, no regions 

were more activated for the element stimuli than the compound stimuli. For the 

similarity group, no areas were more active for the compound stimuli than the element

stimuli, although the occipital lobes were, as for the rule-based group, activated at 

lower thresholds (this could reflect, in part, the smaller sample size of the similarity 

group compared to the rule group). However, the left precentral/postcentral gyrus was
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activated more for the element stimuli than the compound stimuli (Figure 8b). When 

comparing the rule and similarity groups, no significant differences emerged.

Familiar items

Although not our primary focus, we also examined the brain activation for the 

familiar items to supplement the critical generalization trials analyses. Participants in 

the similarity-based group activated a diverse set of regions including bilateral 

occipital gyrus, left inferior parietal lobes, and bilateral middle frontal gyrus (Figure 

9a). Rule-based generalizers recruited the bilateral occipital lobes, the left superior 

parietal lobes and the left inferior and middle frontal gyrus (Figure 9b). A conjunction 

analysis indicated common activation between the similarity- and rule-based 

responders in the bilateral occipital lobes, the left superior parietal lobes, and left 

postcentral gyrus (see Figure 9c; Table 3). This pattern is, broadly speaking, similar to

what we observed in the training phase with the same stimuli.

No differences emerged between the rule and similarity groups in either 

whole-brain or in our exploratory ROI analyses. This is perhaps not that surprising as 

these analyses are considerably less sensitive than the analogous critical trials 

analyses given that they do not directly measure generalization and one cannot 

determine at the individual trial level whether a response is rule or similarity 

consistent. As a further exploratory analysis, we used the WFU Pickatlas (Maldjian et 

al., 2003) to construct a mask containing all  regions identified in the Similarity – 

Rule analysis of the critical items previously reported (Figure 7b), and identified 

whether there was any activation in these areas for the familiar items at thresholds of 

p<.005 (uncorrected) and 10 contiguous voxels. This analysis revealed activation in 

the right inferior parietal lobes (peak voxel x = 59, y = -37, z = 31, cluster size: 37 
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voxels). We also conducted the same type of analysis for the right middle frontal 

gyrus region (Figure 7a) that was more activated in the rule than the similarity 

condition for the critical generalization trials but did not detect any activation here.

Participants with a mixture of rule- and similarity-consistent responses

14 participants met the learning criterion for training but showed no clear pattern of 

similarity- or rule-based responding for the critical generalization trials and were 

consequently excluded from the analyses above. Nevertheless, given that these 

participants had a mixture of both types of strategy (rule-consistent, M = .501; 

similarity consistent, M = .499), they provide an opportunity to look at the neural 

correlates of rule- and similarity-based responding within-subjects. 

Similarity-consistent responses evoked activation in the bilateral anterior 

cingulate/medial frontal gyrus, the left superior parietal lobe, and the bilateral 

occipital lobes (Figure 10a). Rule-based responding also activated bilateral occipital 

lobes (see Figure 10b). We did not, however, detect any significant activation 

elsewhere although exploratory analyses with more liberal thresholds (p<.001 and 25 

contiguous voxels) revealed a similar pattern of activation to what we observed with 

the similarity responders. We suspect the reduced activation here compared to the 

corresponding analysis for the consistent rule-based sorters reflects the lower number 

of participants and trials in the current analysis. We found no indication of any 

differences between strategies in either whole-brain or exploratory ROI analyses. 

Discussion

The present study used a negative and positive patterning design originally developed 

by Shanks and Darby (1998; see also Wills et al., 2011) to compare the brain 
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activation of rule and similarity generalization. Participants were divided into either 

rule-based or similarity-based generalizers according to their responses during the 

critical items at test. Importantly, participants in both groups were highly consistent 

and did not differ in their ability to follow their preferred strategy. There was 

extensive overlap of activation between the rule- and similarity-based groups but at 

the same time there were regions that were differentially activated by the two 

strategies. We discuss the most notable aspects of our findings below. 

In the training phase, there was extensive overlap between groups including 

diverse regions of the prefrontal cortex, the parietal lobes and the occipital lobes. 

Differences between strategies, in contrast, were more restricted – no regions were 

more active in the similarity group than the rule group, although the posterior 

cingulate/precuneus and the anterior cingulate/ medial prefontal cortex (in the second 

half of training) were more active in the rule group than the similarity group. The 

greater posterior cingulate/precuneus activation is perhaps somewhat surprising 

although these regions have previously been implicated in rule-based category 

learning (Milton & Pothos, 2011). The anterior cingulate activation is in line with the 

key role this region is thought to play in rule selection in COVIS's rule-based system 

(Ashby et al., 1998).

In the test phase, there was again considerable common overlap in the regions 

activated by the rule and similarity groups for both the critical generalization trials 

and the familiar trials. As before, areas activated included regions of the prefrontal 

cortex (including the middle frontal gyrus), bilateral parietal lobes, and bilateral 

occipital lobes. These regions have all previously been implicated in categorization 

tasks (e.g., Carpenter et al., in press, Milton et al., 2009). For example, the bilateral 

parietal lobes have been heavily implicated in both explicit and implicit classification 
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of dot patterns (Aizenstein et al., 2000) and stimulus generalization (Seger, Braunlich,

Wehe, & Liu, 2015). Furthermore, our results add to the growing body of evidence 

that diverse regions of the prefrontal cortex are involved in categorization (e.g., 

Grossman et al., 2002; Koenig et al., 2005; Milton & Pothos, 2011; Seger & Cincotta, 

2002). The common activation shared by the rule and similarity groups across both 

the category learning and generalization components of this task is consistent with the

idea that both strategies share a number of common, inter-related processes, such as  

stimulus processing, response selection, stimulus-response mappings, feedback 

processing (whether it is an external signal as in training or more internally generated 

as is likely in test), uncertainty and attentional and working memory demands to name

just a few likely candidates. 

While no differences were identified between generalization strategies in 

whole-brain analyses, exploratory ROI analyses provided evidence for dissociable 

activation between the rule and similarity groups. As predicted, the rule-based 

generalizers activated the right middle frontal cortex to a greater extent than the 

similarity-based generalizers. This was in keeping with the trend from the training 

phase for there to be greater activation in the right prefrontal cortex in the rule group 

than the similarity group. In contrast, the similarity-based generalizers preferentially 

recruited the anterior medial prefrontal lobe and the right inferior parietal lobes.

The greater right middle frontal gyrus activation in rule-based generalizers 

than similarity-based generalizers is consistent with a broad range of previous work 

indicating that the middle frontal lobes is a critical site for rule-based categorization 

(e.g., Grossman et al., 2002; Milton & Pothos, 2011; Patalano et al., 2001; Seger & 

Cincotta, 2002, 2005; Tracy et al., 2003) and, more generally, its role is well-

established in working memory processing (Owen, 2000). This pattern of findings is, 
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therefore, in line with the idea that the "opposites" rule is the result of deliberative, 

rule-based processes, rather than being driven by a non-rule based, associatively 

mediated system (Maes et al., 2015). 

Turning to the regions preferentially linked to similarity responding, the right 

inferior parietal lobes were identified by Grossman et al. (2002) as being linked to 

similarity judgments and they suggested that it had a role in overall feature 

configuration processing. Alternatively, it could reflect recollection-based memory 

processes which are often observed in this region (e.g., Milton et al., 2011; Wheeler &

Buckner, 2004). This would be consistent with the idea that similarity processing 

places particular demands on the retrieval of past, related, instances. We found that the

anterior medial prefrontal lobe was activated more for the similarity than the rule 

group, in a strikingly similar location to that observed by Koenig et al. (2005) in their 

analogous comparison. Our explanation for this result is similar to Koenig et al.’s - the

activation in this region may reflect the greater dependence on retrieving specific 

exemplars from long-term memory in the similarity-based condition rather than 

having generalization supported by an abstract rule.

Of course, there is always a danger in linking specific brain regions to a 

particular function and in knowing whether the regions identified are essential for the 

strategy used. For example, the fact that both the similarity and rule groups activated 

different parts of the prefrontal cortex more than the other strategy appears to 

challenge any clear-cut narrative that rule generalization requires higher order, 

deliberative processes while similarity generalization requires more automatic, non-

deliberative processes. One intriguing future approach may be to further explore the 

regions where differences emerged (i.e., the right middle frontal gyrus for the rule 

generalizers and the anterior medial frontal lobe and right inferior parietal lobes for 
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the similarity generalizers) using transcranial magnetic stimulation (TMS). For 

example, according to our results, one might expect that stimulating the right middle 

frontal gyrus would disrupt rule generalization but leave similarity generalization 

intact, while stimulating the anterior prefrontal lobe (or right inferior parietal lobes) 

might impair similarity generalization but not rule generalization. Furthermore, if the 

greater activation in the anterior medial prefrontal cortex reflects a greater reliance on 

retrieving past instances in similarity generalization than rule generalization, then one 

might expect that stimulating this region would disrupt performance in a task using 

similar stimuli which more directly assesses memory capacity.

Regardless of the precise role that these regions may play, using the Shanks-

Darby procedure to examine the neural correlates of rule and similarity generalization 

makes a valuable new contribution to the area because it overcomes some problems 

which mar the paradigms used in previous related imaging studies. In particular, many

studies in this area confound rule-based and similarity-based learning with single 

versus multidimensional learning (e.g., Milton & Pothos, 2011; Nomura et al., 2007; 

Tracy et al., 2003). Furthermore, all previous studies investigating this issue index 

rule-based learning through behavior that can also be produced by a simple 

associative mechanism that incorporates some process of selective attention (e.g., 

ALCOVE, Kruschke, 1992). In contrast, for the Shanks-Darby procedure there is no 

simple associative model that can explain both the similarity and rule-based 

generalization observed and the same number of dimensions are relevant in both rule- 

and similarity-based learning. 

There are other notable differences between the Shanks-Darby procedure and 

the other tasks previously used (e.g., Grossman et al., 2002; Koenig et al., 2005; 

Nomura et al., 2007; Tracy et al., 2003) which may have impacted the results 
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obtained. For instance, the Shanks-Darby task enables one to partition items into 

generalization trials (items not encountered during training) and familiar trials (which 

had previously been learned during training). In contrast, other studies have either 

used category learning (e.g., Carpenter et al., in press; Nomura et al., 2007) or 

category decision making (e.g., Grossman et al., 2002; Milton et al., 2009) procedures

where there is no generalization phase, or used imaging analyses which combine old 

training items with generalization trials (e.g., Koenig et al., 2005). Given that in the 

test phase, we only observed evidence for differences in the generalization trials and 

not in the familiar trials this could be an important distinction.

A second important difference is that previous studies typically use multi-

dimensional stimuli which possess either binary (e.g., Milton et al., 2009; Tracy et al.,

2003) or continuous values (e.g., Carpenter et al., in press; Nomura et al., 2007) on a 

particular dimension. In contrast, our stimuli have discrete components (e.g., A, B, 

AB etc) that are either present or absent. This distinction has not previously been 

systematically investigated but could potentially have an important impact on the 

pattern of results obtained. Clearly, in future it would be of value to further explore 

rule and similarity learning under a more diverse range of conditions in order to build 

up a broader understanding of how the two types of strategies relate to each other.

While the Shanks-Darby procedure appears to have a number of strengths, one

potential limitation is that although the rule and similarity groups were well-matched 

in their consistency of applying their preferred strategy for the critical generalization 

trials, the rule group significantly outperformed the similarity group for the familiar 

training trials (this is the same pattern which Shanks & Darby, 1998, found). It is 

worth noting, though, that the familiar trials were analyzed separately from the critical

generalization trials where the neural differences emerged, which should attenuate any
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influence this difference would have on our results. Furthermore, differences between 

groups for the familiar items (where only correct responses were considered) were 

extremely restricted which suggests that performance difference between groups had 

little impact on the pattern of activation. Nevertheless, in future work with the 

Shanks-Darby procedure it would be desirable to have the groups better matched on 

performance for the familiar trials. One way of doing this could be to introduce a 

learning criterion during the training phase, which has been shown to better equate 

groups on the familiar test items in this procedure (Wills et al., 2011). 

Another notable aspect of our results is that the key comparison between rule 

and similarity generalization was between-subjects. While we looked at this from a 

within-subjects perspective as well by considering those participants who displayed a 

mixture of strategies, these analyses were not particularly revealing. We suspect that 

this was due to these participants randomly responding on the critical trials and/or that

there were insufficient trials of each type to reliably detect any differences. In future, 

one could potentially further increase the number of critical generalization trials in the

procedure, and/or use a combination of more effective instructions than we used with 

training outside the scanner to ensure that participants produce a good mixture of rule 

and similarity generalization responses. 

Another limitation of this study is that while the differences between 

generalization strategies were consistent with our a priori predictions and in line with 

past related work, it must be acknowledged that these differences were not identifiable

in whole-brain analyses and could only be detected in more exploratory, post-hoc 

analyses. Clearly, it would be valuable for future work to try and replicate our basic 

pattern of results.
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Nevertheless, our finding of differences in activation between rule and 

similarity generalization (albeit only in exploratory analyses) is in line with recent 

behavioral and comparative studies that have been conducted with the Shanks-Darby 

procedure. Specifically, Wills et al. (2011) found that participants who completed the 

training session under a concurrent load went on to produce significantly less rule-

based generalization than participants who undertook training under no load. Wills et 

al. suggested that this is consistent with the idea that discovering the "opposites" rule 

requires considerable working memory capacity and if this is not available that 

participants will fail to transition from using a similarity approach to a rule-based 

approach. Related to this, Maes et al. (2015) found that while humans (under no 

concurrent load) could readily discover the opposites rule, both pigeons and rats were 

unable to do so and relied on similarity generalization. This is consistent with the idea

that pigeons and rats may be forced to rely on the similarity system while humans also

have access to a rule-based system. Our findings complement these two recent 

behavioral studies by identifying specific neural correlates that are associated with 

rule and similarity-based generalization.

However, while our results make a novel and valuable contribution to the area,

our findings stop some way short of providing clear evidence for qualitatively 

separable generalization systems by any reasonable definition. For instance, neural 

differences in themselves should not be taken as evidence for separable systems given

that past work has shown that items within the same category can provoke differential

activation (e.g., Davis & Poldrack, 2014; DeGutis & D’Esposito, 2009; Grinband et 

al., 2006).What may be more compelling evidence for separable learning systems 

would be large differences in activation in regions that are not also activated by the 

other strategy. This does not appear to be the case in the present study where the 
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differences in generalization were restricted and located close to regions that were 

activated in training and test by both strategies. Furthermore, the commonalities in 

activation between strategies clearly outweigh the differences.

One potentially fruitful way of viewing the current data, then, is to consider 

category learning and stimulus generalization as cognitively complex processes 

comprising a number of sub-components (e.g., stimulus processing, hypothesis 

testing, decision making, feedback processing etc) many of which are likely to be 

shared by rule and similarity strategies.  Furthermore, one strategy may place more of 

an emphasis on one of these sub-processes than the other strategy does. For example, 

the “opposites” rule needed for rule generalization appears likely to place particular 

demands on working memory capacity and rule formation that do not appear to be 

needed to the same extent for similarity generalization and this may require increased 

activation of the right middle frontal gyrus. Conversely, a similarity strategy may, for 

example, impose higher memory demands than the rule condition (where there may 

be more of an emphasis on abstract rules) which could lead to greater engagement of 

the anterior medial prefrontal lobes. Of course, our hypotheses as to what particular 

role these brain regions play may not be correct but as others have recommended 

(e.g., Davis et al., 2012) trying to link brain regions to specific functions of the 

learning process may be at least as profitable an approach as focusing on the more 

general and contentious question of whether data is more in line with single or 

multiple system accounts. We suggest that further examination of the Shanks-Darby 

procedure, with its notable strengths, could play an important role in further 

illuminating both these important questions.
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Footnotes

1 The raw imaging and behavioral data is available for interested readers at: 

http://www.willslab.co.uk/exe10/index.html.

2 By convention, a Bayes factor (BF) of over three is interpreted as providing 

substantial evidence for the experimental hypothesis (Jeffreys, 1961), while a BF 

below a third provides substantial evidence for the null (Dienes, 2011). BF analysis 

requires an estimate of the mean expected difference under the experimental 

hypothesis; we estimated this from the observed difference for the familiar test items. 

Following Dienes (2011), the expected difference was modeled as a two-tailed normal

distribution with a standard deviation equal to half the mean. Calculations were run 

using a custom script (Baguley & Kaye, 2010) within R (R Core team, 2015).
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Table 1

 Regions Commonly Activated by Rule-Based and Similarity-Based Generalization for

in the Training Phase.

                                                                                                  Talairach Coordinates
Region Cluster size BA x y z z-score
Left anterior cingulate 1176 32 -6 18 40 6.59
   Right anterior cingulate 32 6 16 40 5.98
   Left medial frontal gyrus 32 -8 12 45 5.89
Left middle frontal gyrus 5721 9 -50 7 29 6.40
   Left precuneus 19 -28 -67 29 6.36
   Left inferior parietal lobe 40 -32 -50 43 6.34
Right inferior occipital gyrus 3147 18 38 -82 -4 5.83
   Right occipital lobe 19 28 -74 -5 5.71
   Right middle occipital gyrus 18 36 -84 2 5.66
Left insula 185 13 -30 20 1 5.65
   Left inferior frontal gyrus 47 -30 25 -5 4.90
Right inferior frontal gyrus 196 45 32 24 4 5.34
Right superior parietal lobe 406 7 32 -52 45 4.68
   Right precuneus 7 18 -62 49 4.19
   Right superior parietal lobe 7 32 -58 40 4.19
Right precentral gyrus 354 4 48 -11 48 4.66
   Right precentral gyrus 6 34 -14 62 4.18
   Right precentral gyrus 6 40 -7 52 3.87
 Note. BA = brodmann’s area. All activations significant at p<.001. Indented rows 

indicate voxels in the same cluster as the non-indented row above them.

39



Table 2

Regions Commonly Activated by Rule-Based and Similarity-Based Generalization for 

in the Critical Generalization Trials

                                                                                                  Talairach Coordinates
Region Cluster size BA x y z z-score
Right superior parietal lobe 566 7 32 -58 51 5.40
   Right precuneus 19 30 -68 29 4.77
   Right inferior parietal lobe 40 34 -50 41 4.36
Left superior parietal lobe 1040 7 -26 -62 44 5.09
   Left precuneus 7 -26 -67 27 5.05
   Left parietal lobe 39 -28 -62 36 4.97
Left middle occipital gyrus 556 18 -26 -91 10 4.82
   Left middle occipital gyrus 18 -26 -84 -4 4.74
   Left inferior occipital gyrus 19 -38 -76 -5 4.23
Right middle occipital gyrus 425 18 24 -89 10 4.44
   Right middle occipital gyrus 18 16 -94 14 4.21
   Right occipital lobe 17 22 -88 -2 3.97
Left medial frontal gyrus 329 6 -2 16 45 4.40
   Right medial frontal gyrus 6 8 16 42 3.94
Left middle frontal gyrus 104 9 -50 4 33 3.63
   Left precentral gyrus 6 -38 0 33 3.46
Note. BA = brodmann’s area. All activations significant at p<.001. Indented rows 

indicate voxels in the same cluster as the non-indented row above them.
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Table 3

Regions Commonly Activated by the Rule and Similarity Groups During Test for the 

Familiar Items.

                                                                                                  Talairach Coordinates
Region Cluster size BA x y z z-score
Right superior parietal lobe 154 7 30 -49 39 5.37
   Right parietal lobe 39 30 -56 38 4.70
Left middle occipital gyrus 565 18 -36 -86 -2 5.17
   Left middle occipital gyrus 18 -28 -80 -6 5.08
   Left cuneus 17 -14 -91 8 5.01
Left superior parietal lobe 858 7 -30 -56 40 5.07
   Left precuneus 19 -28 -68 38 4.88
   Left superior parietal lobe 7 -30 -62 49 4.81
Right middle occipital gyrus 564 18 14 -91 14 4.47
   Right middle occipital gyrus 18 38 -82 1 4.44
   Right middle occipital gyrus 18 30 -87 4 4.33
Left anterior cingulate 244 32 -8 17 38 4.45
   Right superior frontal gyrus 8 2 18 47 3.86
   Left superior frontal gyrus 6 -6 8 49 3.54
Note. BA = brodmann’s area. All activations significant at p<.001. Indented rows 

indicate voxels in the same cluster as the non-indented row above them.
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Figure Captions

Figure 1: The training and test trial types in the Shanks and Darby (1998, Experiment

2) allergy prediction task; letters indicate foods eaten by a hypothetical patient Mr. X,

+ = patient  develops  an allergic  reaction;  -  = patient  does not  develop an allergy

reaction; ? = no feedback given.

Figure 2: a) Accuracy of rule-based and similarity-based responders for familiar items

during the test phase; b) Proportion of critical trials across blocks which are consistent

with the strategy participants were assigned to.

Figure  3: a)  Mean  probability  of  predicting  an  allergic  reaction  for  the  critical

compound  stimuli;  b)  Mean  probability  of  predicting  an  allergic  reaction  for  the

critical element stimuli. Also shown are difference-adjusted 95% confidence intervals

for the between-subjects effects (Baguley, 2012).

Figure  4: a)  Brain  regions  activated  across  all  trials  and  all  participants  during

training; b) Regions activated by correct responses by the rule group during training;

c) Regions activated by correct responses in the similarity group during training; d)

Common brain regions activated by correct responses in the similarity and rule groups

The coordinates indicate the origin for the image displayed. Lighter colors indicate

higher z-scores.

Figure 5: a) Brain regions more activated by the rule group than the similarity group

across all blocks of training; b) Brain regions more activated by rule-based responders
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than similarity responders across the second half of training. The coordinates indicate

the origin for the image displayed. Lighter colors indicate higher z-scores.

Figure 6: a) Brain regions significantly activated by similarity responders during the 

critical trials; b) Brain regions significantly activated by rule-based responders during 

the critical trials; c) Common brain regions activated by similarity and rule-based 

responders during the critical trials. The coordinates indicate the origin for the image 

displayed. Lighter colors indicate higher z-scores.

Figure 7: a) Brain regions more activated by the rule-based responders than similarity 

responders for the critical trials; b) Brain regions more activated by similarity 

responders than rule-based responders for the critical trials. The coordinates indicate 

the origin for the image displayed. Lighter colors indicate higher z-scores.

Figure 8: a) Regions more activated by compound items than element items during 

the critical generalization trials for the rule-based group; b) Regions more activated by

element items than compound items during the critical generalization trials for the 

similarity group.

Figure 9: a) Brain regions engaged by the similarity responders for the familiar items 

during test; b) Brain regions engaged by the rule-based responders for the familiar 

items during test; c) Brain regions commonly engaged by the similarity and rule-

based responders for the familiar items during test. The coordinates indicate the origin

for the image displayed. Lighter colors indicate higher z-scores.
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Figure 10: a) Regions activated by similarity-consistent responses for the group who 

displayed a mixture of both strategies; b) Regions activated by rule-consistent 

responses for the group who displayed a mixture of both strategies. 
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