

ON THE COMPARISON OF MODEL AND HUMAN HETEROGENEITY

Andy J. Wills Lenard Dome @ajwills72

A mathematically-specified theory that is implemented as a computable algorithm for the purpose of simulating some aspect of human, or animal, behaviour.

Wills & Pothos (2012)

WHAT IS A MODEL?

IS THIS MODEL ANY GOOD?

Goodness of fit: Extent to which a model can accommodate already-observed data pattern(s).

Model and human heterogeneity

MODEL ADEQUACY AS OVERLAPPING SETS

$$\alpha = \frac{|M \cap H|}{|H|}$$

$$\beta = \frac{|M \cap H'|}{|H'|}$$

Accommodation

Excess flexibility

MODEL ADEQUACY AS OVERLAPPING SETS

G-DISTANCE

$$g = \sqrt{\frac{(1-\alpha)^2 + \beta^2}{2}},$$

INVERSE BASE-RATE EFFECT

Training (Relative Frequencies)	Test		
$AB \rightarrow 1 \text{ (x 3)}$	A, B, C, AB, AC, BC, x 12		
$AC \rightarrow 2 \text{ (x 1)}$	AB, AC, BC, x 12		

INVERSE BASE-RATE EFFECT

Ordinal Pattern	Frequency	
$A \simeq B < \emptyset < BC \simeq C$	104	
$A \simeq B < \varnothing < BC < C$	24	
$B < A < \varnothing < BC < C$	16	
$B < A < \varnothing < BC \simeq C$	16	
$B < A \simeq \varnothing < BC < C$	14	
$B < A < \varnothing \simeq BC < C$	14	

Training (Relative Frequencies)	Test
$AB \rightarrow 1 \text{ (x 3)}$	A, B, C, AB, AC, BC, x 12
$AC \rightarrow 2 \text{ (x 1)}$	AB, AC, BC, x 12

MODELS OF THE IBRE

- Attentional associative-learning models
- EXIT (Kruschke, 2001) "Market leader"
- NNRAS, NNCAG (Jones & Paskewitz, 2020) Simplified versions of EXIT
- Plain-associative model (known poor model)
- LMSNET (Gluck & Bower, 1988; see also Rescorla & Wagner, 1972).
- Dissimilarity-Exemplar models
- DGCM18 (O'Bryan et al., 2018)

MODEL ADEQUACY

model	BIC	NLL	g	α	β
LMSNET	25770.05	11514.62	0.66	0.06	0.004
NNCAG	28097.40	11307.89	0.35	0.52	0.03
NNRAS	29320.45	11234.21	0.19	0.80	0.08
DGCM18	30661.65	11219.61	0.19	0.83	0.12
EXIT	31476.40	10941.78	0.21	0.85	0.17

SUMMARY

- g-distance is a formal measure of model adequacy, which combines:
- Accommodation
- Excess flexibility
- The inverse base-rate effect (IBRE) is a robust non-rational learning phenomenon.
- Applying g-distance to models of the IBRE
- The success of 'market leader' model EXIT may be due to its excess flexibility
- It's simpler derivative (NNRAS) and a notable alternative (DGCM18) generally outperformed EXIT
- At least in the current case, g-distance better captures model adequacy than the commonly-used Bayesian Information Criterion (BIC) metric.

Special Issue: Advanced Studies in Human-Centred Al

Dome, L. & Wills, A.J. (2025). g-

Review, 132, 632-655.

distance: On the comparison of model

and human heterogeneity. Psychological

Guest Editor
Prof. Dr. Andy J. Wills
Plymouth University

Special Issue Information:

Human-centred AI puts human behaviour and experience at the heart of artificial intelligence research. We welcome original papers on topics in human-centred AI. The papers may be theoretical, empirical, or both. They may report new findings, or synthetically review the existing literature.