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   Categorization is one of the most fascinating aspects of human  cognition. 
It refers to the process of organizing sensory experience into groups. This 
is an ability we share with other animals (e.g. Herrnstein & Loveland, 
 1964 ), and is key to our understanding of the world. Humans seem 
 particularly adept at the systematic and productive combination of 
 elementary concepts to develop complex thought. All in all, it is hard to 
envisage much of cognition without concepts. 

 The study of categorization has a long history (e.g. Hull,  1920 ). It is 
usually considered a particular research theme of cognitive psychology, 
cognitive science, and cognitive neuroscience. Categorization relates 
intimately to many other cognitive processes, such as learning, language 
acquisition and production, decision making, and inductive reasoning. 
What all these processes have in common is that they are inductive. That 
is, the cognitive system is asked to process some experience and subse-
quently extrapolate to novel experience. 

 A  formal  model of categorization is taken to correspond to any descrip-
tion of categorization processes in a principled, lawful way. Formal models 
of categorization are theories that allow quantitative predictions regard-
ing the categorization behaviour of participants. Some formal models 
also make predictions about the underlying neuroscience. 

 Selecting the models to be discussed in this volume was difficult. 
Our goal was to create an accessible volume with a reasonably small 
number of models. As a result, there are many excellent models which 
we were not able to include. Notable omissions include Heit’s ( 1997 ) 
proposal for how to modify exemplar theory to take into account 
the influences of general knowledge, Kurtz’s ( 2007 ) auto-associative 
approach to categorization, Lamberts’s ( 2000 ) model of the time 
course of categorization decisions, Rehder’s ( 2003 ) view of categoriza-
tion as causal reasoning, Schyns’s ( 1991 ) model of concept discovery 
based on Kohonen nets, Vanpaemel and Storms’s ( 2008 ) attempt to 
integrate prototype and exemplar theory, several models of statistical 
clustering (e.g. Fisher,  1996 ; Fraboni & Cooper,  1989 ), and interesting 
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developments based on the mathematics of quantum mechanics (e.g. 
van Rijsbergen,  2004 ). 

 We hope that the models we have selected will help to illustrate some 
of the key ideas in the formal modelling of categorization. In the next 
sections, we summarize some of these ideas. We then go on to summarize 
briefly each of the models presented in this volume, and finish with some 
thoughts about how these models might be compared. 

   Supervised and unsupervised categorization 

     Categorization processes can be distinguished into supervised and 
unsupervised – in other words, processes that require external feed-
back versus those that do not. This is an important distinction, and one 
that has had a substantial influence on the development of categoriza-
tion research. For example, most categorization models are proposed as 
either specifically supervised categorization models or as unsupervised 
ones. The majority of categorization research concerns supervised cat-
egorization and, in this volume, we have included the most prominent 
corresponding models. Equally, we have attempted to include contri-
butions which cover some of the successful unsupervised categorization 
models. 

 In brief, supervised categorization concerns the processing of novel 
experience in relation to a pre-defined set of categories. Simply put, a 
child might see a round object which looks like it is edible, and wonder 
how it fits to its existing categories of oranges, lemons, or apples. She 
might attempt a guess and an adult might point out whether the guess is 
correct or not; this process of corrective feedback is one of the possible 
ways in which categories can develop in a supervised way (although it is 
unclear as to how central this process is in human conceptual develop-
ment). In the laboratory, supervised categorization often involves creat-
ing a set of artificial stimuli, determining how they should be classified 
(this is done by the experimenter prior to the experiment), asking a par-
ticipant to guess the classification of each stimulus one by one, and pro-
viding corrective feedback. 

 It seems uncontroversial to say that supervised categorization plays a 
part in the acquisition of many real-world concepts. However, one can 
reasonably ask where concepts come from in the first place. A related 
intuition with respect to real life concepts is that certain concepts are less 
ambiguous than others (for example, compare ‘chair’ with ‘literature’; 
with respect to the latter, many naive observers would disagree as to 
which instances should be considered ‘literature’). Both these problems 
are problems of unsupervised categorization. 
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 Unsupervised categorization concerns the spontaneous creation of 
concepts. For example, in the laboratory, participants might be pre-
sented with a set of artificial stimuli with instructions to classify them 
in any way they like. A key goal of unsupervised categorization research 
is to determine why certain classifications are preferred, compared to 
others. With respect to real concepts, one can ask what determines the 
particular division of experience into concepts. Why, for example, do 
we have separate concepts for ‘chairs’ and ‘armchairs’, rather than a 
single one to encompass all relevant instances? The particular divisions 
we acquire seem to be affected by the category labels our culture pro-
vides (e.g. Roberson  et al .,  2005 ; this would correspond to a supervised 
categorization process), but they must also be influenced by prior intui-
tions of which groupings are more intuitive. Other things being equal, 
more intuitive classifications should be easier to learn, and so unsuper-
vised categorization models can also be applied to the problem of pre-
dicting which classifications are easier to learn compared to others (of 
course, some classes of supervised categorization models are suitable for 
addressing this problem as well). 

 How fundamental is the distinction between supervised and unsuper-
vised categorization? Consideration of the models of supervised and 
unsupervised categorization included in this volume reveals several import-
ant common features. For example, nearly all the models considered are 
driven by some function of psychological similarity. Also, some researchers 
have argued that supervised categorization models are logically equivalent 
to unsupervised ones (cf. Pothos & Bailey,  2009 ; Zwickel & Wills,  2005 ); 
such an argument for the equivalence of supervised and unsupervised cat-
egorization is based on the general computational properties of categor-
ization models. However, even if it is computationally feasible to create a 
model which can account for both supervised and unsupervised categor-
ization results within the same  formalism, psychologically it might be the 
case that these are separate cognitive processes. 

 The SUSTAIN   model (Love, Medin, & Gureckis,  2004 ;  Chapter 10 ) 
was one of the first attempts to account for both supervised and unsuper-
vised categorization within the same model. The model’s architecture 
is specified around a parametric combination of two components. The 
first component develops category representations as a result of an 
external supervisory signal and the second component spontaneously 
generates clusters based on a principle of similarity (that is, more simi-
lar items end up in the same cluster). This model is interesting since it 
embodies a particular assumption about the relation between super-
vised and unsupervised categorization processes, namely that they are 
distinct but related.     
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   Exemplars and prototypes 

 The contrast between exemplar   and prototype theory   has been at 
the heart of the development of (supervised) categorization research. 
Equally, these are the two theories that psychologists without any par-
ticular categorization expertise are most likely to recognize. Accordingly, 
the first two chapters cover a prominent version of exemplar theory, the 
generalized context model (Nosofsky,  1988 ; see also Medin & Schaffer, 
 1978 ) and prototype theory (Hampton,  2000 ; Minda & Smith,  2000 ), 
respectively. Contrasting these two formalisms is a complicated issue. 
In principle, it is possible to identify stimulus sets that allow differential 
predictions (e.g. Medin & Schaffer,  1978 ; Medin & Schwanenflugel, 
 1981 ). In practice, sometimes the comparisons hinge on the role of 
particular parameters, whose psychological relevance has to be care-
fully justified. The effort to compare prototype and exemplar theory has 
led some researchers to examine formal comparisons (e.g., Nosofsky, 
 1990 ; see also Ashby & Alfonso-Reese,  1995 ). Such comparisons and 
related analyses (e.g., Navarro,  2007 ; Smith,  2007 ; Vanpaemel, & 
Storms,  2008 ) have led to a profound understanding of the formal 
properties of exemplar and prototype models, to an extent that is rare 
in psychology. 

   Unitary and multi-process models 

 Should categorization be understood as a unitary process (e.g. 
Nosofsky & Kruschke,  2002 ) or a combination of independent proc-
esses?  Chapter 4  covers the COVIS   model (COmpetition between 
Verbal and Implicit Systems; Ashby  et al .,  1998 ), which has been built 
on the assumption that human (supervised) categorization is supported 
by at least two separate, competing systems. COVIS is also notable as 
it is currently the only model which has been developed to provide 
categorization predictions at both the behavioural and neuroscience 
level. Indeed, COVIS motivated many of the early investigations which 
have allowed categorization researchers to consider ways in which the 
impressive recent advances in neuroscience could help the develop-
ment of categorization theory (e.g. Nomura  et al .,  2007 ; Zeithamova & 
Maddox,  2006 ). 

   Parallel distributed processing 

 Parallel distributed processing (PDP)   models are generally considered 
to have a certain degree of biological plausibility – in other words, the 
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architecture of the models is said to mimic some aspects of brain archi-
tecture. PDP models are often built to describe particular aspects of 
cognitive development (e.g. Plunkett  et al .,  1997 ) or psychopathology 
(Plaut & Shallice,  1993 ). McClelland   and Rumelhart   ( 1986 ) have led 
an extensive connectionist research programme;  Chapter 5  covers the 
extension of this work in categorization behaviour. Unlike most categor-
ization models, which are tested with respect to either the classification 
of novel instances or the spontaneous generation of categories, the PDP 
model of  Chapter 5  is supported through known developmental aspects 
of the categorization process and how categorization competence breaks 
down in specific cases of brain pathologies (such as semantic dementia). 
 Chapter 7  considers the feature-based approach to stimulus representa-
tion assumed by PDP models. 

   Attentional processes 

 The acquisition of categories seems to result in the direction of attention   
towards those aspects of the stimuli that are most useful in determin-
ing category membership. Most formal models of categorization posit 
some form of attentional process; the focus of  Chapter 6  is these proc-
esses. It also extends these ideas to both mixture of experts models (see 
also  Chapter 4 ) and considers how they might be formulated within a 
Bayesian framework (see also  Chapter 8 ). 

   Optimal inference models 

 Categorization is an example of an inductive problem, which requires 
the determination of category membership from the limited infor-
mation provided by the features of a stimulus. The mathematics of 
Bayes’s theorem can be employed to develop accounts of optimal per-
formance on inductive problems. Often, this kind of approach takes a 
step back from psychological processes to consider how ideal solutions 
to the inductive problem of categorization might shed light on the 
behaviour of humans and other animals. Such an approach is embed-
ded in the general effort to understand cognition in terms of Bayesian 
probabilistic principles (e.g., Griffiths, Steyvers, & Tenenbaum, 
 2007 ; Tenenbaum & Griffiths,  2001 ). Bayesian principles can also be 
extended to more powerful frameworks (e.g., based on quantum prob-
ability; Busemeyer, Wang, & Townsend,  2006 ).  Chapter 8  illustrates 
the application of Bayesian principles in categorization, in terms of an 
extension to Anderson  ’s Bayesian model   of unsupervised categoriza-
tion (Anderson,  1991 ). 
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   Minimum description length 

 An approach similar to the above is possible if one considers categoriza-
tion as a process of data reduction. In other words, perhaps one of the 
reasons we have categories is that they allow a more efficient (less mem-
ory intensive) representation of the world. A minimum description length 
(a.k.a.  simplicity     ) framework is basically an algorithmic coding scheme. 
It allows a researcher to define the codelength for data and hypotheses 
for the data. Then, the problem of choosing an appropriate hypothesis 
is translated to a problem of finding the hypothesis which leads to the 
greatest overall reduction in codelengths. Pothos   and Chater ( 2002 ) 
  suggested that categories can be considered as hypotheses regarding 
structure in the similarity relations between a set of stimuli. A particular 
classification will be preferred if it can simplify the description of simi-
larity information to a greater extent. Thus, MDL principles naturally 
lead to a model of unsupervised categorization, which is described in 
 Chapter 9 . 

 It is interesting that the normative computational frameworks of 
Bayesian probability and MDL can both lead to unsupervised   categor-
ization models – perhaps this is because the lack of an external teach-
ing signal in unsupervised categorization is replaced by the assumptions 
each model makes regarding structure (cf. Chater,  1996 ). 

   Machine learning 

 Categorization research in psychology concerns the organization of 
objects into categories. Clearly, this process is relevant in many areas of 
machine learning   and statistical clustering. A common problem in such 
areas is to infer whether it is meaningful to organize some instances into 
clusters – this is a problem of unsupervised categorization.  Chapter 11  
covers some related modelling work, in relation to a class of models based 
on category utility, that is the probability that an instance has  certain fea-
tures given membership to a particular category (i.e., how ‘useful’ the 
category is, for the purpose of predicting the features of its members, 
e.g., Corter & Gluck,  1992 ). Clearly, category utility is closely related to 
the Bayesian approach described in  Chapter 8 . 

 Considering a machine learning approach to categorization raises 
 several interesting questions. How much convergence should we expect 
between human and machine learning categorization? Are there categor-
ization methods more efficient or useful than the one employed by the 
human cognitive system? How domain-dependent is the selection of the 
optimal categorization strategy? 
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   General knowledge 

 Murphy   and Medin   ( 1985 ) pointed out that conceptual coherence, the 
‘glue’ that binds the instances of a concept together in a meaningful and 
intuitive way, has to be more than just, for example, similarity relations. 
Each concept is an inseparable part of our overall knowledge of the world 
and, conversely, without this knowledge it is impossible to appreciate 
the significance of a concept. Compelling as these intuitions about cat-
egorization have been, it has proved remarkably difficult to formalize a 
putative role of general knowledge   in categorization (cf. Fodor,  1983 ). 
 Chapter 12  covers a proposal for a model about how categories develop 
based in part by some aspects of general knowledge. 

   Outline of this book 

 In this section we highlight some of the key aspects of the models covered 
in this volume. The models are described in detail in their respective 
chapters. Our purpose is not to repeat this material, rather to draw the 
attention of the reader to such model features that might enable a better 
understanding of model differences and commonalities. 

  Chapter 2 – The generalized context model 

   The generalized context model (GCM) is an exemplar model of super-
vised categorization. A novel stimulus is classified into a pre-existing cat-
egory based on its similarity to known members of that category (and 
to members of other known categories). Similarity in the GCM is spe-
cified in terms of distances in a psychological space  , as proposed by, for 
example, Shepard ( 1987 ). So, at the heart of the GCM is a principle 
of psychological similarity  . A fundamental aspect of the GCM is that it 
computes similarity relations not just on the basis of the original psycho-
logical space, but also any transformations of this space that are possible 
through (graded) attentional selection   or compression/stretching of the 
psychological space as a whole. In this way, the GCM is a very powerful 
model: it is most often the case that its parameters can be set in a way that 
human data in a supervised categorization can be closely reproduced. 

 The GCM makes relatively few prior assumptions about the categor-
ization process. For example, parameters governing attentional weight-
ing, the form of the similarity function, the metric space, the nature of 
responding (probabilistic versus deterministic) can all be set in response 
to fitting particular human data. The price for this flexibility is, of course, 
the relatively large number of free parameters. Some key psychological 
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assumptions embodied in the GCM (apart from the obvious one, that 
category representation is based on individual exemplars) are that graded 
attentional weighting of stimulus dimensions and stretching/compression 
of psychological space are possible as a result of learning.   

   Chapter 3 – Prototype models of categorization 

   The extensive research on the relation between exemplar and prototype 
theory has led to computational implementations of these ideas in a way 
that their form is as similar as possible, and differs only with regards to 
the key psychological assumptions which are unique in each approach. 
This is a highly desirable situation, as it enables precise comparisons 
between the two formalisms. According to prototype theory, a novel 
instance is more likely to be classified into a category if the similarity 
between the instance and the category prototype is high; prototypes are 
typically operationalized as averages of category members. As with exem-
plar theory, more recent versions of prototype theory allow the same 
transformations of psychological space as the GCM. Another common 
feature of the two approaches is that they both postulate a single system 
of categorization. 

 Prototype theory is very similar to exemplar theory, but for a critical 
difference. The former is consistent only with linearly separable, convex-
shaped categories, but the latter allows any kind of category shape. To 
see intuitively why this has to be the case, consider that for a category 
to have a meaningful prototype representation, the prototype (which is 
the average of the instances) must be included in the area (or volume) of 
psychological space which is occupied by the category.   

   Chapter 4 – COVIS 

   The COVIS model postulates that category learning is mediated by two, 
competing systems. The first system attempts to develop explicit, verbaliz-
able rule  s that describe the required categorization. The rule-based system 
will be favoured to the extent that such rules exist, are simple, and allow 
accurate classification performance. It is assumed to be supported by the 
prefrontal cortex  , anterior cingulate  , the anterior striatum  , and the hippo-
campus  . The second system is a procedural learning system  , which allows 
the learning of classifications such that information from all available dimen-
sions is taken into account. Accordingly, the procedural system involves a 
mechanism of information integration. The brain areas associated with this 
system are principally the striatum   and the inferotemporal cortex  . The two 
systems compete with each other; for any particular stimulus, preference 
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for one of the two competing systems is determined by confidence in the 
predicted response and the overall track record of the system. 

 The unique element of COVIS is that its computational implementation 
is specified with respect to the known neurophysiology of the brain. For 
example, the equation determining perseveration for a rule involves a free 
parameter which is linked to dopamine   levels in the striatum. In this way, 
COVIS can be tested both with behavioural data (e.g., participant perform-
ance in a categorization experiment) and neuroscience data (e.g., fMRI 
studies of how brain activity varies with different categorization tasks).   

   Chapter 5 – Semantics without categorization 

 This chapter summarizes the progress in an extensive research pro-
gramme to model human categorization behaviour with a multi-layer, 
feedforward, backpropagation   network. An underlying hypothesis in this 
programme is that categories do not exist as distinct representational 
entities, rather categorization behaviour (of any kind, for example, clas-
sification of new instances or inference about the unseen properties of 
a shown stimulus) arises from the way environmental input affects the 
connections in a network. A particular feature of the postulated network 
architecture is the existence of a set of context units, which take into 
account the particular situation in which the categorization of a new 
instance takes place (cf.  Chapter 12 ). Different contexts can result in 
different categorizations for the same instance. 

   Chapter 6 – Models of attentional learning 

 This chapter summarizes some of the evidence in support of the idea 
that categorization involves selective attention  , and then discusses the 
development of models to account for this phenomenon. Starting with 
approaches related to the global stretching and compression of psycho-
logical dimensions implemented in GCM, a proposal is presented for 
how attentional allocation may be exemplar specific, and how attentional 
allocation may be allocated between competing cognitive systems (cf. 
COVIS). There is also consideration of how attentional allocation might 
occur within a Bayesian framework   (cf.  Chapter 8 ), where multiple 
hypotheses about category structures are maintained simultaneously. 

   Chapter 7 – An elemental model of associative learning and memory 

 This chapter considers a feature-based (a.k.a.  elemental     ) approach to mod-
elling categorization (see also  Chapter 5 ). Specifically, the phenomenon 
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of peak shift   is discussed, for which (in both humans and in pigeons) 
an elemental account may be more appropriate than an exemplar-based 
account (cf.  Chapter 2 ). Peak shift is the phenomenon that, under cer-
tain circumstances, classification accuracy may increase with  decreasing  
similarity to the members of category into which the item is classified. A 
formal elemental model of categorization is presented that provides an 
account of some of the situations where peak shift does, and does not, 
occur. 

   Chapter 8 – Nonparametric Bayesian models of categorization 

 According to this approach to unsupervised categorization, a model of 
category learning can be developed by considering how one can compute 
the category membership of a novel stimulus, given the appearance of the 
stimulus. In other words, the problem of categorization can be reframed 
as a problem of estimating the probability distribution of different objects 
with the same category label. Employing a Bayesian   probabilistic frame-
work to make this idea more concrete can lead to a number of implemen-
tation options, a key difference of which is whether the estimation of the 
required probability distribution is parametric (some assumptions are 
made regarding the general form of the distribution) or nonparametric 
(no assumptions made). This chapter describes a particular categoriza-
tion model based on the latter approach, so that the prior assumptions 
about structure in the world are minimal; the model can be seen as an 
extension of Anderson’s ( 1991 ) rational model   of categorization. 

 A strength of this Bayesian approach to categorization is that it pro-
vides a framework for specifying a family of categorization models, 
including ones which are analogous to standard exemplar or prototype 
models (two parameters can determine whether a particular instanti-
ation behaves more like an exemplar or a prototype model). 

   Chapter 9 – The simplicity model of unsupervised categorization 

  Chapter 9  describes the second model of (just) unsupervised categor-
ization   that is considered in this volume. The simplicity model   is based 
on principles similar to those underlying the Bayesian probabilistic 
framework explored in  Chapter 8 . According to the simplicity model, 
categorization has a functional role, namely that of providing a more effi-
cient description of any encountered stimuli. This ‘simplicity’ preroga-
tive (informally equivalent to Ockham’s razor  ) is formally implemented 
in a MDL framework, which is just a set of rules for deciding when a 
particular description for some data should be preferred. In the case of 
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categorization, the data correspond to the perceived stimuli and descrip-
tions to possible classifications. 

 A minimum description length framework is equivalent to a Bayesian 
one when the priors employed in the latter correspond to the so-called 
universal priors (Chater,  1996 ). Therefore, the simplicity model of 
 Chapter 9  can be seen as a special case of the (parametric versions of) 
Bayesian classifiers presented in  Chapter 8 . Two noteworthy aspects of 
this approach are, first, that it involves no parameters at all and, second, 
that its input can be relational (for example, whether two stimuli are 
more similar than two other stimuli, as opposed to particular information 
about the features of the stimuli). Finally, the simplicity model assumes 
that all stimuli are presented concurrently. 

   Chapter 10 – Adaptive clustering models of categorization 

 This chapter outlines the SUSTAIN   model, which embodies a pro-
posal for understanding the relation between supervised and unsuper-
vised categorization. The model’s implementation is based on combining 
two components. The first component allows categories to develop on 
the basis of a supervisory signal, as is the case in exemplar or proto-
type theory. The second component supports the spontaneous creation 
of categories. In the absence of feedback, items will be assigned to the 
pre-existing category representation to which they are most similar. If an 
item does not fit any of the existing category representations very well, 
then a new category representation is created. SUSTAIN assumes trial-
by-trial stimulus presentation, so this modelling approach predicts order 
effects in the creation of categories. In this respect, SUSTAIN is analo-
gous to the early Bayesian   categorization work presented in  Chapter 8  
(Anderson,  1991 ). 

 According to this approach, categorization is assumed to be driven by 
similarity. However, it is possible to modify the attentional weighting of 
stimulus dimensions. This ability is, of course, essential for supervised 
categorization, but an analogous mechanism exists for unsupervised 
 categorization as well. 

   Chapter 11 – Constructing concept hierarchies using category utility 

 Chapters 2– 10  describe attempts to understand human categoriza-
tion which are primarily motivated from particular empirical findings. 
Another approach is possible through the consideration of artificial 
systems for the creation of ‘useful’ categories. This chapter describes 
an unsupervised   system that develops conceptual hierarchies   using the 
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psychological principle of  category utility     . According to category utility 
(Corter & Gluck,  1992 ), categories are useful to the extent that they 
allow accurate prediction of the features of their instances. 

   Chapter 12 – Knowledge resonance in models of category 
learning and categorization 

 Cognitive scientists have mostly avoided attempts to incorporate puta-
tive general knowledge   influences (such as semantics) in formal models 
(cf. Fodor,  1983 ). In categorization, such an approach leads to mixed 
reactions. On the one hand, there is no doubt that formal models driven 
entirely by similarity  , or other low-level properties of the categorized 
stimuli, can be incredibly successful. On the other hand, most cognitive 
scientists would agree that a complete account of categorization has to 
take into account semantics as well. The relevant challenge is taken up 
in the model described in this chapter, KRES  , which provides a for-
mal approach for how semantic information can affect the formation 
of categories. Other features of the model include the assumptions that 
categories are represented with prototypes and that a category repre-
sentation interacts with the representation of the currently  processed 
stimulus. 

 Prior knowledge in KRES is encoded in two ways. First, additional 
relations are specified between stimulus features, which would cor-
respond, for example, to knowledge that if a particular feature is pre-
sent then another feature should be present as well. Second, the model 
embodies representations of ‘prior concepts’, which can affect the learn-
ing of a new category, when it is assumed that the new category is similar 
to a prior concept. 

   Chapters 13, 14, 15 – Commentaries 

 The final three chapters comprise three invited commentaries on the 
models presented in  Chapters 2 – 12 . In  Chapter 13 , Murphy takes a 
step back from the details of specific models, and asks what the advan-
tages (and drawbacks) of formal modelling might be. In  Chapter 14 , 
Strnad, Anzellotti, and Caramazza put the case from neuropsychology 
and imaging that category representation is domain specific, and sug-
gests this may pose a serious challenge to the domain-general models 
presented in this volume (see also Plunkett & Bandelow,  2006 ; Tyler 
 et al .,  2003 ). In  Chapter 15 , Medin concludes the volume by consider-
ing what progress has been made in the study of categorization in the 
last 30 years. 
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    Comparing models 

 The above summary of the models presented in this volume suggests 
many dimensions along which different models could potentially be com-
pared. For example, an important dimension is between supervised   and 
unsupervised categorization  , which we have already considered exten-
sively. From a theoretical point of view, it is clearly essential to appreci-
ate which model characteristics relate to some fundamental assumption 
about psychological processes and which are incidental to a particular 
implementational philosophy. For example, in the cases of many mod-
els the distinction between supervised and unsupervised categorization 
is not fundamental: a model is presented as, for example, a model of 
supervised categorization not specifically because there is an underlying 
assumption that the psychology of unsupervised categorization is sep-
arate from that of unsupervised categorization, but rather because the 
modeller just happened to be interested primarily in supervised categor-
ization. Of the models reviewed above, only SUSTAIN   makes an expli-
cit claim regarding the psychological relation between supervised and 
unsupervised categorization. 

 A model characteristic which does appear fundamental is whether 
the model proposes a unitary categorization system or a categorization 
 faculty which is supported through the combination (and possibly com-
petition) of independent components. COVIS   is the only model in this 
volume in which there is a strong claim of multiple systems, with regards 
to its two systems of rule-based category learning versus information 
integration learning. SUSTAIN   arguably involves two separate systems 
for supervised and unsupervised categorization, although it is not clear 
whether the theory assumes these to be separate, independent systems 
(and no corresponding tests have been provided). 

 The role of similarity   in categorization is arguably one of the most 
important considerations in categorization research. Of course, all 
 models assume there is ‘similarity structure’ in the world, that is, cer-
tain instances are more similar than others (if that were not the case, 
arguably a meaningful process of categorization would not be pos-
sible in the first place). However, models differ in the extent to which 
similarity is employed beyond the level of an input representation. For 
example, GCM   predicts (subject to the effects of, for example, attention 
and response bias) that a novel item is most likely to be classified into 
the category to which it is most similar. In contrast, certain Bayesian 
approaches (e.g. Anderson,  1991 ;  Chapter 8 ) predict that a novel item 
will be placed into the category which best predicts the novel item’s 
features. 
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 Models also differ in the attention  al mechanisms they assume. Some 
models allow coarse attentional selection (e.g., the simplicity model, 
which has the option of completely ignoring certain dimensions), other 
models allow graded, fine attentional modulation of stimulus dimensions, 
and in some models it is possible to stretch or compress psychological 
space (e.g., prototype and exemplar theory). Thus, it appears possible to 
compare formal categorization models in terms of the transformations of 
psychological space that they allow. 

 Most (but not all) models of categorization assume that stimuli are 
processed one by one. Should we consider the distinction between con-
current presentation   of the available stimuli versus one by one presen-
tation to be fundamental for our understanding of the psychology of 
categorization? This seems unlikely. Ultimately, it seems clear that the 
development of categorical knowledge is incremental, in the simple sense 
that we rarely, if ever, have all relevant category instances available at the 
same time. Equally, there are situations when we have strong intuitions 
about how a set of concurrently available stimuli should be spontan-
eously categorized. It would seem extremely unlikely that the principles 
that guide categorization in a trial-by-trial case are entirely different from 
those in the case of concurrent presentation. It then becomes an imple-
mentational challenge to develop models that naturally allow categoriza-
tion in both modes. 

 The nature of category representation   has been the focus of contro-
versy for many categorization studies. Categories can be represented 
as prototypes, individual exemplars, decision boundaries, have flexible 
representations which can oscillate between more specific (exemplar) or 
more abstract (prototype) versions, or verbal rules. The issue of category 
representation is clearly a very fascinating one. A potential problem with 
progress on this issue is that sometimes the representational assump-
tions embodied in a model are confounded with other implementation 
details – so that it is not clear which aspect of the model is responsible 
for its behaviour. This problem has been addressed most compellingly in 
the comparison between exemplar and prototype theory, as, in the case 
of this particular controversy, versions of prototype and exemplar models 
have been built which are equivalent in all respects apart from the way 
categories are represented. 

 In this section our aim has been to highlight some dimensions along 
which the models covered in this chapter could be compared. This nat-
urally leads to the question of how to compare categorization models. 
Ideally, in comparing two models we would like to be able to determine 
the circumstances when the performance (e.g., in predicting human 
data) of one model is superior to another model. Moreover, it would 
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be important to determine when two models should be considered 
 sufficiently similar so that they embody effectively equivalent claims 
about the nature of human categorization. Unfortunately, arguably, this 
is the single most important current obstacle in the further development 
of categorization research: the lack of comparative studies between dif-
ferent modelling approaches, which is a somewhat inevitable result of 
the increasing complexity of the available models. In the few instances 
when detailed computational and mathematical comparisons have been 
carried out, such as in the instance of the debate between exemplar and 
prototype theory, psychologists have been able to develop a profound 
understanding of the underlying differences in assumptions about the 
psychological process of categorization. We think that careful compara-
tive work between formal approaches in categorization is an essential 
prerequisite for the further development of categorization theory. It is 
hoped that this volume can help. 

     REFERENCES 

    Anderson ,  J. R.    ( 1991 ).  The adaptive nature of human categorization . 
 Psychological Review ,  98 ,  409 –429. 

    Ashby ,  G. F.   , &    Alfonso-Reese ,  A. L.    ( 1995 ).  Categorization as probability 
density Estimation .  Journal of Mathematical Psychology ,  39 ,  216 –233. 

    Ashby ,  G. F.   ,    Alfonso-Reese ,  L. A.   ,    Turken ,  A. U.   , &    Waldron ,  E. M.    ( 1998 ). 
 A neuropsychological theory of multiple systems in category learning . 
 Psychological Review ,  105 ,  442 –481. 

    Barsalou ,  L. W.    ( 2008 ).  Grounded cognition .  Annual Review of Psychology ,  59 , 
 617 –645. 

    Busemeyer ,  J. R.   ,    Wang ,  Z.   , &    Townsend ,  J. T.    ( 2006 )  Quantum dynamics of 
human decision making .  Journal of Mathematical Psychology ,  50 ,  220 –241. 

    Chater ,  N.    ( 1996 ).  Reconciling simplicity and likelihood principles in percep-
tual organization .  Psychological Review ,  103 ,  566 –591. 

    Corter ,  J. E.   , &    Gluck ,  M. A.    ( 1992 ).  Explaining basic categories: feature pre-
dictability and information .  Psychological Bulletin ,  2 ,  291 –303. 

    Fisher ,  D.    ( 1996 ).  Iterative optimization and simplification of hierarchical 
clusterings .  Journal of Artifi cial Intelligence ,  4 ,  147 –179. 

    Fodor ,  J. A.    ( 1983 ).  The Modularity of Mind .  Cambridge, MA :  MIT Press . 
    Fraboni ,  M.   , &    Cooper ,  D.    ( 1989 ).  Six clustering algorithms applied to the 

WAIS-R: the problem of dissimilar cluster analysis .  Journal of Clinical 
Psychology ,  45 ,  932 –935. 

    Griffiths ,  T. L.   ,    Steyvers ,  M.   , &    Tenenbaum ,  J. B.    ( 2007 ).  Topics in semantic 
representation .  Psychological Review ,  114 ,  211 –244. 

    Hampton ,  J. A.    ( 2000 )  Concepts and prototypes .  Mind and Language ,  15 , 
 299 –307. 

    Heit ,  E.    ( 1997 ).  Knowledge and concept learning . In    K.   Lamberts    &    D.   Shanks    
(eds.),  Knowledge, Concepts, and Categories  (pp.  7 –41).  London :  Psychology 
Press . 

9780521190480c01_p1-17.indd   159780521190480c01_p1-17.indd   15 9/6/2010   7:18:00 PM9/6/2010   7:18:00 PM



Emmanuel M. Pothos and Andy J. Wills16

    Herrnstein ,  R. J.   , &    Loveland ,  D. H.    ( 1964 ).  Complex visual concept in the 
pigeon .  Science ,  146 ,  549 –551. 

    Hull ,  C. L.    ( 1920 ).  Quantitative aspects of the evolution of concepts: an 
 experimental study .  Psychological Monographs ,  28   (1 ), Whole No. 123. 

    Kurtz ,  K. J.    ( 2007 ).  The divergent autoencoder (DIVA) model of category 
learning .  Psychonomic Bulletin & Review ,  14 ,  560 –576. 

    Lamberts ,  K.    ( 2000 ).  Information-accumulation theory of speeded categor-
ization .  Psychological Review ,  107 ,  227 –260. 

    Love ,  B. C.   ,    Medin ,  D. L.   , &    Gureckis ,  T. M.    ( 2004 ).  SUSTAIN: a network 
model of category learning .  Psychological Review ,  111 ,  309 –332. 

    McClelland ,  J. L.   , &    Rumelhart ,  D. E.    (eds.) ( 1986 ).  Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition .  Cambridge, MA : 
 MIT Press . 

    Medin ,  D. L.   , &    Schaffer ,  M. M.    ( 1978 ).  Context theory of classification 
 learning .  Psychological Review ,  85 ,  207 –238. 

    Medin ,  D. L.    &    Schwanenflugel ,  P. J.    ( 1981 ).  Linear separability in classifi-
cation learning .  Journal of Experimental Psychology: Human Learning and 
Memory ,  75 ,  355 –368. 

    Minda ,  J. P.   , &    Smith ,  J. D.    ( 2000 ).  Prototypes in category learning: the effects 
of category size, category structure, and stimulus complexity .  Journal of 
Experimental Psychology: Learning, Memory, and Cognition ,  27 ,  775 –799. 

    Murphy ,  G. L.   , &    Medin ,  D. L.    ( 1985 ).  The role of theories in conceptual 
coherence .  Psychological Review ,  92 ,  289 –316. 

    Navarro ,  D. J.    ( 2007 ).  Similarity, distance, and categorization: a discussion 
of Smith’s (2006) warning about “colliding parameters” .  Psychonomic 
Bulletin & Review ,  14 ,  823 –833. 

    Nomura ,  E. M.   ,    Maddox ,  W. T.   ,    Filoteo ,  J. V.   ,    Ing ,  A. D.   ,    Gitelman ,  D. R.   , 
   Parrish ,  T. B.   ,    Mesulam ,  M. M.   , &    Reber ,  P. J.    ( 2007 ).  Neural correlates of 
rule-based and information-integration visual category learning .  Cerebral 
Cortex ,  17 ,  37 –43. 

    Nosofsky ,  R. M.    ( 1988 ).  Similarity, frequency, and category representation . 
 Journal of Experimental Psychology: Learning, Memory, and Cognition ,  14 , 
 54 –65. 

       ( 1990 ).  Relations between exemplar-similarity and likelihood models of 
 classification .  Journal of Mathematical Psychology ,  34 ,  393 –418. 

    Nosofsky ,  R. M.   , &    Kruschke ,  J. K.    ( 2002 ).  Single-system models and inter-
ference in category learning: commentary on Waldron and Ashby (2001) . 
 Psychonomic Bulletin & Review ,  9 ,  169 –174. 

    Plaut ,  D. C.   , &    Shallice ,  T.    ( 1993 ).  Deep dyslexia: a case study of connectionist 
neuropsychology .  Cognitive Neuropsychology ,  10 ,  377 –500. 

    Plunkett ,  K.   , &    Bandelow ,  S.    ( 2006 ).  Stochastic approaches to understand-
ing dissociations in inflectional morphology .  Brain and Language ,  98 , 
 194 –209. 

    Plunkett ,  K.   ,    Karmiloff-Smith ,  A.   ,    Bates ,  E.   , &    Elman ,  J. L.    ( 1997 ).  Connec-
tionism and developmental psychology .  Journal of Child Psychology & 
Psychiatry & Allied Disciplines ,  38 ,  53 –80. 

    Pothos ,  E. M.   , &    Bailey ,  T. M.    ( 2009 ).  Predicting category intuitiveness with 
the rational model, the simplicity model, and the Generalized Context 

9780521190480c01_p1-17.indd   169780521190480c01_p1-17.indd   16 9/6/2010   7:18:00 PM9/6/2010   7:18:00 PM



Introduction 17

Model .  Journal of Experimental Psychology: Learning, Memory, and Cognition , 
 35 ,  1062 –1080. 

    Pothos ,  E. M.   , &    Chater ,  N.    ( 2002 ).  A simplicity principle in unsupervised 
human categorization .  Cognitive Science ,  26 ,  303 –343. 

    Rehder ,  B.    ( 2003 ).  Categorization as causal reasoning .  Cognitive Science ,  27 , 
 709 –748. 

    Roberson ,  D.   ,    Davidoff ,  J.   ,    Davies ,  I. R. L.   , &    Shapiro ,  L. R.    ( 2005 ).  Color cat-
egories: evidence for the cultural relativity hypothesis .  Cognitive Psychology , 
 50 ,  378 –411. 

    Schyns ,  P. G.    ( 1991 ).  A modular neural network model of concept acquisition . 
 Cognitive Science ,  15 ,  461 –508. 

    Shepard ,  R. N.    ( 1987 ).  Toward a universal law of generalization for psycho-
logical science .  Science ,  237 ,  1317 –1323. 

    Smith ,  J. D.    ( 2007 ).  When parameters collide: a warning about categorization 
models .  Psychonomic Bulletin & Review ,  13 ,  743 –751. 

    Tenenbaum ,  J.   , &    Griffiths ,  T. L.    ( 2001 ).  Generalization, similarity, and Bayesian 
inference .  Behavioral and Brain Sciences ,  24 ,  629 –641. 

    Tyler ,  L. K.   ,    Bright ,  P.   ,    Dick ,  E.   ,    Tavares ,  P.   ,    Pilgrim ,  L.   ,    Fletcher ,  P.   , 
   Greer ,  M.   , &    Moss ,  H.    ( 2003 ).  Do semantic categories activate distinct 
cortical regions? Evidence for a distributed neural semantic system . 
 Cognitive Neuropsychology ,  20 ,  541 –559. 

    Vanpaemel ,  W.   , &    Storms ,  G.    ( 2008 ).  In search of abstraction: the varying 
abstraction model of categorization .  Psychonomic Bulletin & Review ,  15 , 
 732 –749. 

    van Rijsbergen ,  K.    ( 2004 ).  The Geometry of Information Retrieval . Cambridge: 
 Cambridge University Press.  

    Zeithamova ,  D.   , &    Maddox ,  W. T.    ( 2006 ).  Dual-task interference in percep-
tual category learning .  Memory & Cognition ,  34 ,  387 –398. 

    Zwickel ,  J.   , &    Wills ,  A. J.    ( 2005 ).  Integrating associative models of supervised 
and unsupervised categorization . In A. J. Wills (ed),  New Directions in 
Human Associative Learning .  London :  LEA . 

    

9780521190480c01_p1-17.indd   179780521190480c01_p1-17.indd   17 9/6/2010   7:18:01 PM9/6/2010   7:18:01 PM


