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In a typical artificial grammar learning (AGL) task, 
participants are first asked to memorize a set of let-
ter strings (e.g., XMTRV, XTVMRX). Following this 
incidental- training phase, participants are told that the let-
ter strings that they have memorized were created from a 
grammatical structure but are usually not informed about 
the specific rules of the structure. In order to test whether 
learning occurred during the incidental-training phase, the 
participants are asked to discriminate novel grammatical 
strings from nongrammatical strings. Participants can 
perform this discrimination (see A. S. Reber, 1993, for a 
review), and the poor verbal expression of knowledge ex-
hibited by participants has led to the suggestion that learn-
ing in the AGL task occurs implicitly (e.g., A. S. Reber, 
1993; but see Shanks & St. John, 1994).

Many researchers have examined the representational 
properties of the knowledge acquired in the AGL task 
(for a review, see Pothos, 2007). A large body of evidence 
has suggested that during the training phase, participants 
chunk strings into fragments to aid memorization (e.g., 
Perruchet & Pacteau, 1990). Grammaticality judgments at 
test are then assumed to be based on the fragment content 
of the strings; test strings containing a higher proportion 
of fragments encoded during training will have a higher 
probability of being endorsed as grammatical (Perruchet, 
Vinter, Pacteau, & Gallego, 2002). Furthermore, partici-
pants might learn a host of microrules relating to what 
makes strings grammatical (Dulany, Carlson, & Dewey, 
1984). These might, for instance, consist of the simple 

distributional statistics of grammatical strings: informa-
tion about string length or legal starting and ending letters 
(see Shanks, Johnstone, & Staggs, 1997).

Many studies have suggested that item similarity con-
tributes to test string discrimination. For instance, Vokey 
and Brooks (1992) demonstrated that the similarity be-
tween a test string and a particular training string will in-
fluence grammaticality decisions independently of a main 
effect of grammaticality (i.e., its similarity to the complete 
set of training items). Pothos and Bailey (2000) showed 
that the generalized context model (Nosofsky, 1986), an 
exemplar model of categorization, can also explain varia-
tions in test performance during an AGL task. Such simu-
lations imply a parallel between AGL and categorization 
processes; grammaticality decisions in AGL are assumed 
to be based on the average similarity between a test string 
and all members of the grammatical training set, so that 
category membership decisions (grammatical or non-
grammatical) map directly onto grammaticality decisions. 
Given the overwhelming support for category formation 
under incidental-learning conditions (see Smith, 2008), 
models of categorization undoubtedly provide a valuable 
context in which to discuss AGL.

The present article examines an additional source of 
information that may be used in AGL—namely, informa-
tion about set variance. Since all grammatical strings are 
created from a particular underlying structure, the vari-
ance among grammatical strings in any particular sub-
set is likely to be low. In contrast, randomly created non-
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grammars shared zero fragments; see the Method section). 
Consequently, if participants were to rely on knowledge of 
string fragments to make grammaticality decisions during 
the test phase, nongrammatical strings, rather than gram-
matical strings, would be more likely to be endorsed as 
grammatical. In contrast, if positive transfer were observed 
in the present experiment (i.e., an ability to discriminate 
grammatical and nongrammatical test strings in partici-
pants trained on grammatical strings, but not in partici-
pants trained on nongrammatical strings), this would pro-
vide evidence for an abstract form of syntactic transfer.

MeThod

Participants and Apparatus
Fifty-six undergraduates participated for payment of £4; 28 were 

assigned to the grammatical trained (GT) condition, and 28 to the 
nongrammatical trained (NGT) condition. Testing was conducted 
using PCs.

design
Figure 1 shows the two grammatical structures (Grammar A and 

Grammar B; hereafter, GA and GB). Both structures used the let-
ters M, R, X, T, and V. Grammatical strings were created by passing 
through the structure, following the direction of the arrows between 
nodes. An example string from GA is MRVRV. The two grammati-
cal structures are distinct in several ways. First, the grammars have 
unique starting and ending letters. Second, they create sets of strings 
that are unique in their bigram content (pairs of letters; e.g., MM, 
XT). Each bigram could feature in strings created by only one of the 
two grammatical structures. By extension, the structures therefore 
also contained no overlapping chunks of any greater length. Of the 
25 possible bigrams, 12 were assigned to GA and 13 to GB. For 
each set of 5 bigrams starting with the same letter, 2 were used in 
one grammatical structure and 3 in the other. For repetition bigrams 
(e.g., MM), 2 were assigned to GA and 3 to GB.

A large pool of strings was created for each grammar, from which 
strings were selected at random until each of the two selected sets of 
grammatical strings had the following properties: (1) Exactly half 
of the grammatical strings in each set contained a repetition bigram, 
and (2) no more than one repetition occurred in each string. String 
length was limited to between four and seven letters.

Nongrammatical strings were created by randomly selecting let-
ters for strings with lengths of four to seven. No more than one repe-
tition bigram could appear in a nongrammatical string. From a large 
pool of nongrammatical strings, those strings containing bigrams 
from both GA and GB were selected for use in the experiment. Non-
grammatical strings with lengths five and seven contained an equal 
proportion of GA and GB bigrams. For strings with lengths four 
and six, this was not possible (such strings comprise three and five 
bigrams, respectively), and so, for these strings, half contained one 
more GA bigram, and half one more GB bigram. All of the string-
generation procedures above were used so as to make it difficult to 
account for a positive transfer effect by similarity-based processes 
(e.g., exemplar/fragment encoding).

For encoding of variability to be a plausible means by which syn-
tactic transfer could occur, set similarity (the inverse of set variabil-
ity) must be higher for grammatical sets of strings than for nongram-
matical sets of strings. In order to verify this property, we estimated 
these similarities using the Pearce (1987) similarity equation:

 
a b

a b

S
N N

= ⋅com com , 

where aSb is the similarity of items a and b, Na and Nb are the num-
ber of features in stimuli a and b, and com is the number of features 
common to a and b. We instantiated two different versions of this 
model. In the Pearce (letter) version, individual letters of the strings 

grammatical strings do not share an underlying structural 
basis, and so, variation among the strings in this set will 
be higher. How would knowledge of set variance facilitate 
performance in an AGL task? Performance in AGL tasks 
is, in part, driven by learning during the discrimination 
test phase (e.g., R. Reber & Perruchet, 2003; Redington 
& Chater, 1996). Thus, the discrimination test involves 
not only the process of generalization from memorized 
strings, but also the development of a new representation 
of the grammatical structure during the test phase. One 
possibility, therefore, is that training with grammatical 
strings generates knowledge regarding the expected level 
of variance among a set of grammatical strings, which can 
then be used to produce above-chance classification of 
grammatical strings during the test phase.

In order to test this possibility, we adapted a condi-
tion from A. S. Reber (1969), in which participants were 
trained with strings from one grammatical structure be-
fore being transferred to a second phase containing strings 
from a novel grammatical structure. A. S. Reber (1969) 
found that participants showed positive transfer in this 
condition; performance was better for the second gram-
matical structure than for the first.1 One could view this as 
a demonstration of syntactic transfer—a positive transfer 
effect from learning about an initial grammatical structure 
to learning about a second, novel, grammatical structure. A 
demonstration of syntactic transfer might suggest that par-
ticipants have acquired some nonspecific knowledge about 
grammatical sets, such as an appreciation of the variation 
among grammatical strings. However, it is unclear whether 
the facilitated performance in A. S. Reber’s (1969) second 
phase truly reflected transfer of knowledge about gram-
maticality or whether it simply reflected increased practice 
with procedural aspects of the task (e.g., memorization, 
recall). Furthermore, A. S. Reber’s (1969) grammatical 
structures shared many common features, and therefore, 
transfer performance may have reflected generalization 
of item-specific knowledge from training strings, rather 
than the more abstract form of transfer considered here. In 
the present experiment, we reexamined syntactic transfer, 
using grammatical structures designed to control for item-
 specific factors known to affect AGL performance.

In designing the grammatical structures used here, our 
aim was to limit the potential for item-specific knowledge 
acquired during the training phase to affect grammaticality 
decisions at test. Therefore, the two grammatical structures 
(used for training and test) did not share any bigram or 
trigram information (chunks of two and three letters). If 
participants’ process of memorization during the training 
phase involves memorization of chunks, the absence of 
such fragments from the grammatical test strings means 
that this information could not be used to classify these 
strings as grammatical. Furthermore, nongrammatical 
strings contained an equal proportion of chunks from the 
two grammatical structures. Hence, purely in terms of 
fragment information, grammatical training strings were 
more similar to nongrammatical test strings than they were 
to grammatical test strings (since grammatical and non-
grammatical strings shared a small, but nonzero, propor-
tion of fragments, whereas strings from the two different 
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(which was not presented during the training phase) and nongram-
matical strings (NG2). The assignment of GA and GB to training 
and test grammars was counterbalanced in condition GT. NGT par-
ticipants received training with NG1 strings, before receiving a test 
phase with grammatical strings and NG2 strings. The use of GA and 
GB in the test phase was counterbalanced for the NGT condition. 
The assignment of response keys (“z” and “m” keys) to classifica-
tion responses in the test phase was counterbalanced within each 
subcondition.

The participants were initially shown example letter strings and 
were instructed that their task was to memorize a set of strings as 
best they could. In the training phase, strings were presented sequen-
tially (one every 5 sec), until all 20 were displayed simultaneously 
in one column on-screen. The participants then received instruc-
tions regarding the nature of structured strings and details of the test 
phase. GT participants were informed that they had been memoriz-
ing structured strings. NGT participants were informed that they had 
been memorizing randomly created strings. All the participants were 
then told that they would be asked to try and discriminate between 
grammatical and nongrammatical strings in a test phase, that struc-
tured strings were created from a set of rules governing the order 
of letters, and that these rules stated which letters could follow and 
precede other letters. GT participants were informed that the gram-
matical strings in the test phase were created from a grammatical 
structure different from that which created their training strings. All 
the participants were told that this task was difficult, that they were 
not expected to make 100% correct classifications, that they should 
not be concerned if they acted on impulse, and that half of the test 
strings were grammatical and half were nongrammatical.

Before the test phase, the participants completed a key-training 
phase in which they practiced responding to the words “grammati-
cal ” and “nongrammatical ” with the appropriate keys, with feed-

constituted position-specific features. For example, on this basis, the 
strings TMXMTR and TRRMXM have two common features (T in 
Position 1 and M in Position 4) and have a similarity of .111. In the 
Pearce (bigram) version, bigrams constituted the position-specific 
features. For example, strings MRTXRVX and MRVRVX have one 
common bigram (MR in Bigram Position 1) and have a similarity of 
.033. Both metrics range between 0 (no overlap) and 1 (identity). We 
also calculated associative chunk strengths (ACS) for each set of test 
strings (Knowlton & Squire, 1994). This is done by first calculating 
the frequency with which a bigram or trigram occurs in the set of 
training strings. These chunk frequencies are then summed for all 
chunks within a test string and averaged to provide the associative 
chunk strength of the test string.

Table 1 shows the mean within-set and between-set similarities, 
using the Pearce equation, and the mean ACS for sets of test strings 
as a function of the training strings presented. These analyses il-
lustrate that the two sets of grammatical strings are less similar to 
each other than each of them is to the set of nongrammatical test 
strings. Furthermore, within-set similarities (and ACS) were higher 
for the sets of grammatical strings than for the sets of nongrammati-
cal strings. There was a high correlation between ACS values for 
test strings and appropriate Pearce similarity values (i.e., the mean 
similarity of each test string to the entire set of training strings), 
using either the letter [Pearson’s r(320) 5 .82] or the bigram version 
[r(320) 5 .86] of the Pearce metric.

Table 2 shows descriptive statistics for the sets of strings; the sta-
tistics of all four sets are matched as closely as possible. All the 
strings are presented in the Appendix.

Procedure
GT participants were trained on one grammatical set of strings 

before a test phase containing strings from the untrained grammar 

Figure 1. The two grammatical structures used. Grammatical strings are created by 
making a pass from Node 1 through to Node 8, in the direction of the arrows between 
nodes.
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These results suggest that the NGT participants were 
unable to accurately classify strings during the test phase. 
One possibility is that the NGT participants were simply 
responding randomly at test. Alternatively, the NGT par-
ticipants might have been able to categorize strings into 
grammatical and nongrammatical sets but, without any 
experience of grammaticality during the training phase, 
might have been unable to assign appropriate category la-
bels (grammatical and nongrammatical ) to these catego-
ries. These two possibilities can be distinguished by using 
an absolute value of d ′ (hereafter, d ′abs; see, e.g., Haslam 
et al., 2007, for a related approach in the study of unsuper-
vised classification), where

 d ′abs 5 | z(hits) 2 z(false alarms) |.

Thus d ′abs is the absolute value of the difference in the 
z transform of the hit rate and false alarm rate.

If the inability to assign category labels consistently were 
indeed behind the poor performance in condition NGT, d ′abs 
scores should be similar in the NGT and GT conditions. 
However, if the poor performance in condition NGT re-
flected poor discrimination of the two sets of test strings, 
d ′abs would reveal lower levels of consistency in group NGT. 
Analysis of d ′abs produced results consistent with the former 
hypothesis: GT and NGT conditions did not differ signifi-
cantly (d ′abs 5 0.33 and 0.30, respectively; t , 1).

Since the minimum value of d ′abs is zero, the value ex-
pected by chance will be greater than zero. Monte Carlo 

back provided after each response (e.g., “correct response”). Ten 
“grammatical ” and 10 “nongrammatical ” trials were presented in 
random order.

The test phase contained 80 trials, two presentations of each of the 
40 strings. Each string was repeated only after all the test stimuli had 
been presented once. For each participant, each half of the test phase 
involved a randomized ordering of the test strings. Strings from the 
last 3 trials of the first presentation half could not be presented on 
the first 3 trials of the second half. Each subblock of 10 strings con-
tained exactly 5 grammatical strings.

The participants were asked to respond to each string, using the 
appropriate key according to whether they thought the string was 
grammatical or nongrammatical, after which “G” or “NG” appeared 
next to the string according to the response made (with no feedback 
on accuracy provided). The next stimulus appeared after a response–
stimulus interval of 1 sec. If the participants failed to respond within 
3 sec, “T/O” (time-out) was presented next to the string and was 
recorded as such. Once made, responses could not be changed. Items 
appeared successively in two columns, with 20 strings appearing 
in each column. Once the first 40 strings had been presented, the 
screen was cleared for the second presentation.

ReSulTS

Three GT participants and 3 NGT participants produced 
accuracy below 75% on the simple key-training phase. 
These 6 participants were removed from subsequent anal-
yses, since they were unable to use the response mappings 
appropriately. The overall pattern of data was the same 
with these participants included. Significance in all the 
analyses reported below was assessed against α 5 .05.

The mean percentage of trials on which a timeout was 
recorded was low in both the GT (1.7%) and NGT (1.2%) 
conditions. GT participants made significantly more 
correct responses than did NGT participants [54.3% vs. 
49.8%; t(48) 5 2.21]. Figure 2 shows grammatical en-
dorsement rates for grammatical and nongrammatical 
strings during the test phase (i.e., hits vs. false alarms), 
for both conditions. A signal detection analysis2 con-
firmed that GT participants were significantly better at 
discriminating between test items than were NGT partici-
pants [d ′ 5 0.22 and 20.01, respectively; t(48) 5 2.22]. 
Discrimination was significantly better than chance in the 
GT condition [t(24) 5 3.09], but not in the NGT condition 
(t , 1). There was no difference in response bias between 
the GT and NGT conditions [β 5 .99 and 1.00, respec-
tively; t(48) 5 1.02, p 5 .31].

Table 1 
Within- and Between-Set Similarity Results using the Pearce equation With Individual letters  

As the Features and With Bigrams As Features and Mean Associative Chunk Strength (ACS)  
of Test Strings As a Function of Training Strings

Training Pearce (Letters) Pearce (Bigrams) ACS of Test Strings

Strings  GA  GB  NG1  NG2  GA  GB  NG1  NG2  GA  GB  NG1  NG2

GA .226 .032 .055 .059 .164 0 .006 .008 8.49 0 2.59 2.65
GB .211 .058 .056 .160 .010 .007 0 8.81 2.25 2.34
NG1 .150 .053 .107 .008 2.33 2.32 3.51 2.52
NG2 .142 .102 2.53 2.30 2.52 3.48

Note—GA and GB are grammatical sets of strings produced by the grammars shown in Figure 1. NG1 is the nongrammatical 
set of training strings. NG2 is the nongrammatical set of test strings. See the text for details of computations. Mean ACS data 
are calculated on the basis of chunk frequency obtained from the training strings. Empty cells for the two versions of the Pearce 
equation are a result of symmetry (e.g., GA_GB 5 GB_GA). ACS values presented in italics relate to conditions that did not 
occur in the experiment (e.g., NG1 was never presented at test; no participants who had received GA strings during training 
experienced GA strings on test; etc.). These values are included for completeness.

Table 2 
descriptive Statistics for the Sets of letter Strings

 
 

Length

 
Proportion of 
Repetitions

Proportion 
of Unique 

Letters

Set  M  SD  M  SD  M  SD

GA 5.85 1.04 .50 .51 .72 .11
GB 5.85 0.88 .50 .51 .66 .11
NG1 5.84 1.02 .45 .51 .65 .10
NG2 5.80 1.11 .50 .51 .67 .14

Note—GA and GB are grammatical sets of strings produced by the 
grammars shown in Figure 1. NG1 and NG2 are nongrammatical sets 
of strings. Statistics shown are mean length, mean proportion of strings 
containing repetitions (e.g., TT), and mean proportion of unique letters 
per string, for the four sets of strings.
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training and test strings, it seems unlikely that this gram-
maticality effect could have resulted from the direct trans-
fer of item-specific knowledge from training to test. Our 
account of these data is that accurate test classification 
relied on a more abstract aspect of participants’ knowl-
edge: an acquired appreciation of the level of variance 
within a set of strings described as grammatical. When 
faced with a discrimination phase involving strings from 
a new grammatical structure and nongrammatical strings, 
the participants in both conditions demonstrated an equiv-
alent ability to distinguish between the high-variability 
(nongrammatical) and low-variability (grammatical) sets 
of strings, as shown by the above-chance levels of consis-
tency (i.e., the ability to consistently classify test strings 
into two distinct sets). The above-chance consistency 
scores demonstrate an ability to pick up on the differences 
between strings during the test phase alone (cf. Reding-
ton & Chater, 1996). This ability may reflect sensitivity 
to the repeating fragments in the grammatical test strings, 
akin to the internal chunk strength sensitivity suggested 
by Meulemans and Van der Linden (1997). However, our 
data demonstrate a novel difference between participants 
trained on grammatical and nongrammatical strings: Only 
the participants who had acquired knowledge about gram-
maticality during the training phase could identify strings 
with low variability (high internal chunk strength) as the 
grammatical set in the test phase, and therefore, only this 
condition produced above-chance levels of accuracy. 
Thus, these data suggest that the detection of structured 
material is enhanced by an appreciation of grammatical 
set variance acquired during AGL (see Flannagan, Fried, 
& Holyoak, 1986, for a related phenomenon in perceptual 
classification learning). The specific processes by which 
this appreciation of set variance is acquired are not ad-
dressed by the present data.

An alternative interpretation of the present data is that 
training with nongrammatical strings led to an impairment 
in a preexisting ability to accurately assign category la-
bels at test, rather than the facilitation of this ability in the 
grammatically trained group. The present data do not allow 
us to decide between these two alternatives. Future work 
may benefit from the use of an untrained control group, 
which could be compared with grammatical-trained and 
nongrammatical-trained groups to assess facilitation and 
impairments caused by training, respectively (cf. R. Reber 
& Perruchet, 2003).

The present data have implications for other transfer ef-
fects that have been studied extensively in the AGL para-
digm. For instance, in symbolic transfer procedures (e.g., 
Altmann, Dienes, & Goode, 1995), grammatical test items 
are created from the same structure as that used to gener-
ate training items but are presented in a different modality 
(e.g., training may involve auditory stimuli, whereas the 
test phase may involve visual stimuli). Despite this differ-
ence in the surface features of training and test stimuli, 
participants can still discriminate grammatical from non-
grammatical test items. Although the mechanisms under-
lying symbolic transfer are not fully understood, current 
theories rely on a process of abstraction between stimulus 
encoding and test performance (see Lotz & Kinder, 2006). 

methods (100,000 iterations) indicated that for an unbi-
ased random responder (i.e., one for whom the probability 
of responding grammatical on any given trial is always .5), 
the mean value for d ′abs is 0.227, and the 95th percentile 
of the distribution is 0.286. Hence, both GT and NGT 
participants showed greater consistency, as measured by 
d ′abs, than would be expected by chance. The GT and NGT 
conditions did not differ on an absolute measure of bias, 
βabs 5 max(β, 1/β) (1.04 and 1.03, respectively; t , 1).3

Although our sets of grammatical and nongrammati-
cal strings were generated so as to rule out many alter-
native interpretations of the main transfer effect, certain 
elements were not perfectly balanced between all sets of 
strings. For instance, in both sets of grammatical strings, 
the first and last letters of each string were always dif-
ferent; this was not always the case for nongrammatical 
strings. The frequency of an alternation (e.g., MXM) was 
also greater for nongrammatical (55%) than for grammat-
ical (30%) strings. Multiple regression analysis (cf. Lorch 
& Myers, 1990) with predictor variables of grammatical-
ity and the two additional factors noted above (first/last 
letter match and alternation) revealed grammaticality as 
the only variable that significantly predicted endorse-
ment rate [t(56) 5 2.44]. Stepwise regression produced a 
model that included grammaticality but excluded both of 
the other factors [F(1,58) 5 6.52].

dISCuSSIoN

The present data provide a clear demonstration of syn-
tactic transfer in AGL. The participants trained on gram-
matical strings classified strings from a novel grammati-
cal structure as grammatical at above-chance levels. Given 
the design of the grammatical structures used to generate 
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NoTeS

1. In A. S. Reber’s (1969) task, participants recalled memorized letter 
strings to criterion. Learning was measured by the number of trials to 
criterion.

2. For all comparisons presented in this article, the same pattern of re-
sults was found when an analysis was conducted using percent correct.

3. Due to a coding error, the Grammar B string VTMVVTR was pre-
sented to participants as VTVVTR; this contains the bigram TV, which 
is permissible in Grammar A. An alternate analysis, excluding all test 
strings containing the bigram TV, leads to the same conclusions for d ′, 
d ′abs, β, and βabs as the analysis presented in the main text.

We suggest that the present data also speak to theories of 
symbolic transfer: Participants trained with grammatical 
strings will approach the test phase with a greater appre-
ciation of the level of variance among grammatical strings 
than will control participants. Future work will be needed 
to explore the relationship between symbolic and syntac-
tic transfer effects.
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GA  GB  NG1  NG2

MMRV TMXMTR MRRXVTX MTXRXV
MMRVX TMXTRXM MTMTVM MVRV
MRTTVX TMXXM MXMRT MVXRTMV
MRTTXRV TMXXMTR MXRT MXVXT
MRTTXVX TRMTR RTMVR RMTTVT
MRTVMRV TRMTRM RVMVT RRVXM
MRTVX TRMXM RXRV RRXRV
MRTXRVX TRMXXTR RXVXRR RVTVXTR
MRVRV TRRMTR TRTRTX TMMTV
MRVRVX TRRMXM TTMVTXR TMRX
RTTVMRV VTMTR TVMVVTX TMVRVMX
RTTVX VTMTRM TVVMX TTRTXT
RTTXRVX VTMXM VMRXVV VRMVR
RTTXV VTMXTR VMTXT VRVTRT
RTTXVX VTMXTRM VRMTVMT VTTM
RTVMRV VTMXXM VRRMTX VXXTVT
RTVMRVX VTRRMTR XMRMXVR XRRTMXV
RTXVX VTMVVTR XMTXTVR XTVRXXR
RTXRVX VVTR XRXVVRM XVRTMTM
RTXVMRV  VVTRM  XVTVTR  XXTRVXR

APPeNdIx 
letter Strings used in the experiment
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