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ABSTRACT—Contemporary theories of learning typically

assume that learning is driven by prediction errors—in

other words, that we learn more when our predictions turn

out to be incorrect than we do when our predictions are

correct. Results from the recording of electrical brain ac-

tivity suggest one mechanism by which this might happen;

we seem to direct visual attention toward the likely causes

of previous prediction errors. This can happen very rap-

idly—within less than 200 milliseconds of the error-causing

object being presented. It is tempting to infer that if

learning is driven by prediction errors, then little can be

learned in the absence of feedback. Such a conclusion is

unwarranted. In fact, the substantial learning that is

sometimes the result of simple exposure to objects can also

be explained by processes of directing attention toward the

likely causes of previous prediction errors.
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Nothing fails like success because we don’t learn from it.

Attributed to Kenneth E. Boulding (1910–1993)

We appear to learn more about things for which we initially

make incorrect predictions than we do about things for which our

initial predictions are correct—the element of surprise seems

conducive to learning. What are the mental processes that lead

to this phenomenon, and what are the implications for situations

in which there are no obvious external indicators of whether one

has succeeded or failed?

PREDICTION AND LEARNING

The relationship between errors of prediction and learning is

best illustrated by a short example. Imagine you are an allergist,

trying to discover which of several foods (peas, carrots, chicken,

ham) produce an allergic reaction in your patient. Figure 1a

illustrates what you learn as a result of your investigation.

Given the information in this figure, which do you think is more

likely to cause an allergic reaction in the patient—chicken or

ham?

The most common response to this question is ‘‘ham.’’ This is

intriguing because, in both cases, you have seen the patient eat

the food in question and develop a rash. You have seen this

happen an equal number of times for each of the two foods. So,

what underlies the belief that ham is more likely to cause an

allergic reaction? It cannot be attributed to differences in prior

beliefs about chicken and ham, because the result is also found

with entirely artificial stimuli (such as meaningless abstract

shapes; e.g., Wills, Lavric, Croft, & Hodgson, 2007; see also

Fig. 1b).

The phenomenon at work, known as cue competition, is widely

observed in humans and other animals (Shanks, 1995) and is

predicted by the hypothesis that we learn more from prediction

errors than we do from prediction successes. A prediction error

occurs when an event in the environment differs from our ex-

pectations. The concept of a prediction error roughly equates to

the everyday concept of being surprised (as opposed to being

wrong). We were not surprised that the patient developed a rash

after eating peas and chicken, because we could already predict

the presence of an allergic reaction on the grounds that he had

eaten peas, which we already knew caused a rash. We therefore

learned relatively little about the relationship between chicken

and allergic reaction. In contrast, we were somewhat more sur-

prised that the patient developed a rash after eating ham, and

hence we learned more about the relationship between ham and

allergic reaction.
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Associative theories propose that learning is the formation of

associations between representations (for example, in the case of

Pavlov’s dogs, the formation of an association between a repre-

sentation of a sound, and a representation of food). Classic as-

sociative-learning theory (e.g., Thorndike, 1898) is embarrassed

by results such as cue competition, because the theory assumes

that learning is simply driven by reinforcement. However, since

the early 1970s, most associative theories of learning have in-

corporated the assumption that learning is driven by prediction

error, largely on the basis of evidence such as cue competition

Cue competition experiment Wills et al. (2007)  Trial types  

First you learn … Phase 1: First you learn … Phase 1

Peas Rash  Jominy fever A+

Carrots No rash  No fever B-

Then you learn … Phase 2:Then you learn … Phase 2

Peas + chicken Rash  + Jominy fever AX+

Carrots + ham Rash  + Jominy fever BY+

Then you’re asked … Phase 3:Then you’re asked … Phase 3

Chicken Rash? Fever? X

Ham Rash? Fever? Y

Errors in phase 2 Event-related potentials in phase 3
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Fig 1. An illustrative cue-competition experiment (A) and a slightly simplified representation of the Wills, Lavric, Croft, & Hodgson (2007) cue-
competition experiment (B, C) and its results (D, E). In the illustrative experiment (A), participants are told that a person eats certain foods and that
consumption of these foods either does or does not cause them to develop a rash. Participants are then asked whether certain foods, not previously
consumed in isolation (chicken, ham), will cause that person to develop a rash. In the Wills et al. (2007) experiment (Panel B), participants were
asked to imagine they worked for a medical referral service and that their job was to predict a fictitious disease (‘‘Jominy fever’’) on the basis of ‘‘cell
bodies’’ in patients’ blood samples. These cell bodies were actually abstract shapes that were randomly allocated for each participant. On each trial,
one or two cell bodies were presented, and participants made either a ‘‘fever’’ or a ‘‘no fever’’ response via key presses and received feedback on the
accuracy of each response. Panel (C) shows this experiment expressed in the standard notation for learning experiments: Different letters (A, B, X,
Y) indicate different stimuli, 1 indicates the presence of an outcome, � indicates the absence of an outcome. Proportion of prediction errors for
AX1 and BY1 as phase 2 proceeds is shown in (D); a prediction error occurs when the participant incorrectly predicts the outcome of the trial.
Panel (E) shows event-related potentials to the presentation of X alone and Yalone in phase 3. The third line shows the difference between the event-
related potentials for X and Y—this difference is described as a selection negativity.
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and other related phenomena (see Pearce, 2008). These con-

temporary learning theories were primarily developed to explain

animal learning, but from the early 1980s they became in-

creasingly used to account for human learning as well (see Wills,

2005).

PREDICTION AND ATTENTION

One of the predictions of a number of contemporary associative

theories is that differences in prediction error lead to differences

in attention. For example, Pearce and Hall (1980) argue that

learning is driven by prediction error because learners are

limited in their ability to process the stimuli they encounter.

To make best use of these limited resources, stimuli that have

recently been followed by unpredicted events are prioritized

by being given greater attention. This attentional differentiation

leads to greater learning about stimuli that have recently been

followed by unpredicted events.

In a recent study (Wills et al., 2007), we investigated the re-

lationship between attention and prediction error in humans by

measuring event-related potentials (ERPs) in a cue-competition

experiment. ERPs are one way of estimating how an individual’s

electroencephalogram (EEG) changes in response to particular

events. In our case, the event of interest was the presentation of

an abstract shape that either had or had not previously been

involved in substantial errors of prediction.

The design of our experiment is illustrated in Figure 1b.

Participants were asked to imagine their job was to predict a

fictitious disease on the basis of ‘‘cell bodies’’ in patients’ blood

samples. These cell bodies were actually abstract shapes. On

each trial, one or two cell bodies were presented, and partici-

pants made either a ‘‘fever’’ or a ‘‘no fever’’ response via key

presses and received feedback on the accuracy of each response.

Figure 1c re-expresses the design of our experiment in the

standard notation of learning experiments: Different letters (A,

B, X, Y) indicate different stimuli, 1 indicates the presence of

an outcome, and � indicates the absence of an outcome.

As Figure 1d shows, AX1 trials resulted in few prediction

errors while BY1 trials initially resulted in many prediction

errors. Behaviorally, our experiment showed the standard cue-

competition result: When Y was subsequently presented alone,

the probability of a participant responding ‘‘fever’’ was 0.72,

whereas it was 0.45 for X presented alone. The stimulus previ-

ously involved in more prediction errors (Y) was more strongly

associated with fever.

The phenomenon of cue competition is already well estab-

lished behaviorally. The novel aspect of our study was to make

use of the large body of knowledge about ERPs to identify

‘‘signatures’’ of attentional processing. In particular, given that

our stimuli are distinguishable primarily by shape, one would

expect to see a selection negativity if stimulus Y is attended to

more than stimulus X (Hillyard & Anllo-Vento, 1998). In other

words, one would expect the ERP for Y to be temporarily less

positive than the ERP for X. This is what we observed, starting

approximately 140 milliseconds after the onset of the stimulus

(Fig. 1e).

There are two interesting implications of this result. First, it

provides support for the idea that there is a correspondence

between errors of prediction and the allocation of sensory pro-

cessing. We may learn more from our prediction errors than from

our prediction successes because the brain directs attention

toward likely causes of previous errors. The second implication

arises from the fact that the difference in attention is apparent

less than 200 milliseconds after stimulus onset. It seems un-

likely that much conscious deliberation is taking place during

this very short amount of time.

PREDICTION IN THE ABSENCE OF FEEDBACK

Learning may be driven by errors of prediction, and one reason

for this may be that objects involved in prediction errors attract

attention. One might therefore be tempted to conclude that very

little is learned in the absence of feedback. Such a conclusion

would, however, be incorrect. Both humans and animals (see,

e.g., Gibson & Walk, 1956) learn in the absence of feedback, as

demonstrated by exposure tasks. Although people are not able

to predict an outcome or category label during exposure tasks

(because no such information is provided), they are able to make

predictions about which aspects of the patterns tend to occur

together. Errors in making these predictions can then drive

learning about these co-occurrences.

One demonstration of exposure learning in humans can be

found in our recent work (Wills, Suret, & McLaren, 2004). In

the final part of our experiment, people had to learn to divide

abstract patterns into two categories (see Fig. 2a). The task is

not easy but can be done on the basis of overall similarity. This

part of the experiment involved standard, feedback-informed

learning: Participants were asked to guess which category each

pattern belonged to and were told after each guess whether

they were right or wrong. They performed poorly at first, but

eventually they could categorize the patterns with a high degree

of accuracy.

The key manipulation in this study involved comparing these

participants to a different group that had been pre-exposed to the

patterns before categorizing them. Pre-exposure involved asking

this group of participants to look through a large number of

patterns one at a time and say whether they had seen that par-

ticular pattern before (each pattern was presented exactly twice).

They were not told whether their responses were right or wrong.

These people then went on to learn to categorize the patterns in

the presence of feedback. The people who had been pre-exposed

to the patterns learned the categorization more quickly than did

those who had not been pre-exposed. It is therefore clear that

something about the stimuli was learned during pre-exposure. In

other words, significant learning occurred in the absence of

feedback.

Volume 18—Number 2 97

Andy J. Wills



Although this might seem to be a very different sort of learning

than that discussed in the first part of this article, the existence

of exposure learning can be predicted from the same central

concepts; namely, (a) prediction error drives learning, and (b)

stimuli previously involved in prediction error attract attention;

prediction errors, in this case, mean failures to predict which

aspects of the patterns tend to co-occur. Under these two central

concepts, attention will be directed towards the parts of the

pattern that are hardest to predict by co-occurrences (and hence

that have high prediction error). This would, under some cir-

cumstances, make it easier to categorize the patterns later. This

is because the aspects of objects that are hardest to predict by

co-occurrence are often those that are relatively rare, and these

rare aspects often tend to predict category membership better

than common aspects.

It is, perhaps, not immediately obvious that rarity and diag-

nosticity (i.e., the ability to predict category membership) will

often be correlated. The clearest, although somewhat extreme,

example of rarity correlating with diagnosticity involves features

that are present in all presented stimuli. Such features are

clearly not rare (they always occur!), and, as a result of their

ubiquity, they cannot provide a basis for dividing the stimuli into

categories. Less common features can. Generally, to the extent

that natural categories can be conceived as overlapping sets of

features, there will be a correlation between rarity and diag-

nosticity. For example, the categories lion, tiger, and leopard all

share a number of features (e.g., four legs). These features are

therefore common across this set of three categories but are not

diagnostic of lion versus tiger versus leopard. In contrast, stripes

are relatively rare across this set of three categories, and they are

highly diagnostic. However, in the lab it is possible to decouple

rarity and diagnosticity. If one uses categories for which rarity

and diagnosticity are not related, then it should be possible to

abolish, or even reverse, the effect of pre-exposure. This is be-

cause in stimuli for which rarity and diagnosticity are unrelated,

attention will not be selectively drawn to the diagnostic features

of the stimuli (under the hypothesis, discussed above, that rarity

and prediction error tend to be related).

As we predicted, in stimuli such as those shown in Figure 2b,

for which rarity and diagnosticity are unrelated, pre-exposure

leads to worse categorization performance than no exposure

at all. The fact that two sets of patterns, which seem basically

quite similar (Fig. 2a vs. Fig. 2b), can lead to opposite effects of

pre-exposure seems quite counterintuitive. Nevertheless, it is

predicted by an account that people make predictions about the

co-occurrence of features and that those features that are hardest

to predict by co-occurrence are the ones that become psycho-

logically most salient.

CONCLUSIONS AND FUTURE DIRECTIONS

Effects such as cue competition suggest that we learn more when

our predictions are incorrect than we do when our predictions

are correct. Our recent study of ERPs supports the idea that one

mechanism behind this phenomenon is the brain’s tendency to

direct attention toward those aspects of the environment that are

most likely to have caused previous prediction errors. This

direction of attention can be rapid (less than 200 milliseconds).

The applicability of the idea that attention follows prediction

error extends beyond situations in which feedback is obviously

present—it can also be successfully applied to situations in

which different parts of a presented object co-occur to some

extent. Such situations permit learning to occur through sim-

ple exposure to objects. The concept of attention following

Category A Category A

A  – Exposure facilitates
categorization

B  – Exposure retards
categorization

Category B Category B

Fig. 2. An example of a categorization that is easier to learn if you look through a large number of the
patterns first (panel A) and one that is made more difficult by pre-exposure (panel B). In our exper-
iments (Wills et al., 2004), participants had to learn to divide the abstract patterns into two categories,
as illustrated (although the number of patterns used in each case was much greater than 12). The
opportunity to look through a large number of the patterns like those in panel (A) helped participants
learn the categorization more quickly. In contrast, looking through the patterns in panel (B) resulted
in the participants taking more time to learn the categorization. The critical, although nonobvious,
difference between the two sets of patterns is that in A, aspects of the pattern that predict category
membership are rarer than aspects of the pattern that do not. The pattern in the center of this figure is
for illustration only—it is a magnification of one of the other patterns
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prediction error can be used to predict when such exposure

will help you to later categorize these objects and when it will

hinder you.

In summary, the phenomena we observe can be explained by

the two following principles: (a) Learning that is associative in

nature is driven by prediction error, and (b) stimuli previously

involved in prediction error attract attention. Such an account

has a number of strengths. First, it is amenable to expression in

formal mathematical terms (see, e.g., McLaren & Mackintosh,

2000), which allows clarity and specificity. Second, it has sub-

stantial generality across different learning tasks, including both

those that include explicit feedback (Wills et al., 2007) and

those that do not (Wills et al., 2004). Third, the account has

generality across a variety of species (see Pearce, 2008, for a

discussion of this account as it applies to nonhuman animals).

Fourth, it makes predictions that are nonintuitive but never-

theless correct (for example, that exposure to the patterns in

Fig. 2a helps you categorize them, but exposure to the patterns in

Fig. 2b hinders categorization). More generally, studies such as

those discussed here suggest that the brain seems to have a kind

of ‘‘heads up’’ system that draws attention rapidly toward those

aspects of our environment that are the likely causes of previous

prediction errors and therefore may merit closer consideration.

Although it is often said that we see what we expect to see, these

studies suggest that we attend to that which has previously

caused our expectations to be violated.

In this article, I have concentrated on prediction-error-driven

associative learning. One might alternatively argue that humans

learn equally about all of the relationships in the example in

Figure 1a but that they then work through a series of reasoned

inductive inferences. For example, when faced with the infor-

mation peas 1 chicken ! rash, participants might reason along

the following lines: ‘‘Peas and chicken cause rash, but peas on

their own cause rash; I therefore can’t be sure that chicken

caused the rash.’’ When faced with carrots 1 ham ! rash,

however, they may reason as follows: ‘‘Carrots and ham cause

rash, but carrots on their own do not cause rash; it therefore

seems likely that the ham caused the rash.’’

One problem with such an account is that, although the at-

tentional difference we observed (Fig. 1e) is sufficient to account

for the cue-competition effect, it seems unlikely that this at-

tentional difference results directly from conscious inferential

reasoning, because it happens so quickly. One could also per-

haps argue that the attentional difference is caused more indi-

rectly by a conscious reasoning process modulating attention in

a top-down manner. Measurements of gaze duration (Kruschke,

Kappenman, & Hetrick, 2005; Wills et al., 2007) make such an

account problematic: People spend more time looking at objects

that have been involved in many prediction errors than at objects

that have not, and this difference in gaze duration appears to be

established before people become proficient at avoiding errors.

If the attentional difference were the result of a top-down in-

fluence from a reasoning process, then one might expect it

to follow, rather than precede, competent performance on the

task.

Nevertheless, it is likely that learning sometimes does involve

processes that cannot be captured by a simple associative system

and that these processes may be more properly accounted for by

a process of deliberative reasoning. There are phenomena that

are problematic for associative accounts (e.g., De Houwer

& Beckers, 2002) and for reasoning-based accounts (e.g., Le

Pelley, Oakeshott, & McLaren, 2005), and a number of re-

searchers have proposed multiprocess accounts of learning (e.g.,

Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson

& Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994).

Examining the relative contributions of reasoning-based and

associative processes, and the ways in which they interact, is an

important direction for future research.

Recommended Reading
Ashby, F.G., & Maddox, W.T. (2005). Human category learning. Annual

Review of Psychology, 56, 115–178. A clear summary of the idea

that categorization is best understood as the result of multiple,

competing brain systems.

Pearce, J.M. (2008). (See References). A well-written, very accessible

introduction to animal cognition in general, including good

coverage of associative theory.

Wills, A.J. (2005). (See References). An edited collection of relatively

accessible articles on human associative learning.
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