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Categorization—dividing the world into groups of things—is one of the

core mechanisms behind many cognitive abilities. Categorization en

ables people to cope with the otherwise overwhelming complexity of

objects and situations by reducing information. It also allows people to

generate predictions by generalizing what they already know to novel

situations. For example, if you meet, say, a new doctor, you can make

certain inferences about how they will act based on what you already

know about the category "doctor." As two situations are rarely (if ever)

identical such an ability seems essential to everyday life. On the other

hand, overgeneralization can be problematic. For example, it might be

useful to have a "cat" category that covers both your own pet and other

similar animals. It would, however, be potentially disastrous ifyou gen

eralized what you knew about this category to the first lion you met.

Most of the psychological research into our ability to categorize has

employed a supervised learning paradigm (e.g., Bruner, Goodnow, &

Austin, 1956; Gluck & Bower, 1988; Medin & Schaffer, 1978).

Prototypically, supervised learning assumes the presence of a perfect

teacher, who observes every category choice and provides correct feed

back on every decision (i.e., which category was the correct one to

choose). This technique has undoubtedly revealed important informa

tion about the psychological processes of categorization. Nevertheless,

it seems unlikely that this level of information is commonly available

outside of the laboratory.

Free classification, which can also be described as unsupervised learn

ing, is a methodology that goes to the opposite extreme. Participants are

typically asked to partition stimuli into groups that seem reasonable or

"natural" to them (e.g., Ahn & Medin, 1992; Bersted, Brown, & Evans,
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1969; Medin, Wattenmaker, & Hampson, 1987; Wills & McLaren,

1998). No feedback on categorization decisions is given.

In this chapter, we describe three basic associative theories of learning

as they might be applied to the problem of category learning. First, we

describe Hebbian learning, which was one of the earliest formal associa

tive theories of learning. Second, we describe competitive learning, which

can, in some ways, been seen as a development ofHebbian learning, and

is a theory of unsupervised learning. Next, we describe the Rescorla-Wag-
ner theory, which is a theory of supervised learning. We then argue that

there is a need for a mechanism that can use feedback when it is avail

able (supervised learning) but will continue to learn if feedback is absent

(unsupervised learning). We propose a possible mechanism that in

volves adding certain aspects of the Rescorla-Wagner theory to compet

itive learning. Our proposed system makes a clear prediction about

people's behavior in a free-classification task, and we describe how we

have begun to test that prediction. The chapter ends with a consider

ation of other theoretical approaches to the problem of category learn

ing, both within the domain of associative learning and more generally.

HEBBIAN LEARNING AND AN INTRODUCTION TO CONNECTIONISM

Hebb (1949) postulated that "when an axon of cell A is near enough to

excite a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such

that A's efficiency, as one of the cells firing B, is increased" (p. 62). One

way ofexpressing Hebbian learning formally is shown in Equation 6.1:

Aw.. = Gafy (6.1)

where a, and a, are the activities of two different neurons, i and;, Awtj is

the change in strength of the connection w.. between neuron i and neu

ronj, and G is a parameter that affects the rate of learning. For simplic

ity, let's assume that a, and a, can take only values of 0 and 1. If a. and a,

are both 1, then the connection strength increases by G. However, if ei

ther i or; is not active, the equation is zero and the connection strength

doesn't change. By this equation, strong connections are developed be

tween neurons that are active at the same time and weak connections

between neurons that seldom fire together.

Hebbian learning has the potential to acquire the sort of information

we need to learn categories. For example, imagine a situation where

neuron i represents a feature of a category, and neuron; represents the

category label. If feature i is typical of category; then a strong link will

form between the two, and so a novel object that has feature i is likely

(other tilings being equal) to be categorized as a member of group ;.

However, it's worth making clear at this point that we are not assuming

there is necessarily a single neuron that uniquely represents, say, the

category "football player." This may be the case, or it might be that cate-
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gories are represented as a pattern of activity distributed over many

neurons (see Page, 2000, for an excellent review of this issue).

In what follows, the neuron or neurons that represent a stimulus fea

ture are called an input unit and the neuron or neurons that represent a

category are called an output unit. The strength of the connection be

tween an input unit and an output unit represents the strength of the

learned association between a stimulus feature and a category. The set

of input units, output units, and the connections between them is de

scribed as a connectionist, or neural, network.

COMPETITIVE LEARNING

This section is an introduction to competitive networks as a model of

unsupervised category learning. In an unsupervised category-learning

situation, stimuli are presented but the category membership of those

stimuli is not given. The network must therefore decide which category

the stimulus belongs to. One way ofdoing this is to assume that the out

put unit made most active by the presentation of the stimulus is the one

that represents the category.

In a standard competitive network (and many other kinds of net

works), the activity of an output unit is the sum of the activities of the

input units multiplied by the connection weights from the inputs units

to the output unit. Formally,

0>=£ai% (6.2)

where o. is the activity of output unitj, at is the activation of input unit

i, and wj} is the connection strength between input unit i and the output

unttj.

Assuming that connection strengths start with random values, it is

likely that the first stimulus presented will make one of the output units

more active than any of the others. Under competitive learning, this out

put unit is considered the "winner" and its activity is set to one. The activity

of all other output units is set to zero. A learning rule can then be applied.

For example, if one applies Hebbian learning, the connection strengths be

tween the active input units and the winning output units would be in

creased. All other connection strengths would remain unchanged.

Through the application ofa learning rule such as Hebbian learning,

the winning output unit comes to more strongly represent the pre

sented stimulus, and hence is more likely to win again if a similar stim

ulus is presented in the future (similar in the sense of having many

features in common). However, if a substantially different stimulus is

presented, it is possible that a different output unit will win. In turn,

that output unit will begin, through the action of the learning rule, to

more strongly represent this substantially different stimulus and

those similar to it. The system has therefore begun to develop the abil-
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ity to categorize, despite the absence of external information about

category membership.

One problem with using basic Hebbian learning in this way is that, in

practice, one output unit can often end up representing all the stimuli.

In an attempt to reduce this problem, Rumelhart and Zipser (1986) in

troduced further competition between the output units by introducing

a limit on the sum of all connection strengths to any given output unit.

This means that, after a certain point, the only way a connection

strength to a particular output unit can increase is if other connection

strengths to that output unit decrease. This encourages output units to

specialize on different kinds of feature patterns.

Rumelhart and Zipser restrict the maximum level of connection

strengths by assuming the presence ofa kind of "decay " process that op

erates every time the connection strengths are changed. Formally, if

unit7 loses,

AWy = 0 (6.3a)

and hence connection strengths to losing output units remains un

changed but, if unit j wins then

(6"3b)

where G is again a learning parameter, ai is one if input unit i is active

but zero otherwise, and n is the number of active input units. Note that

the inclusion of n means that the increase in connection strength is

greater the fewer the number ofactive input units. This compensates an

output unit that is supported by few input neurons.

Equations 6.3a and 6.3b implement a mechanism similar but not

identical to Hebbian learning. If input unit i is active when the winning

unit is active, the connection strengths increase. However, the connec

tion strengths also decay a bit because of the last term of Equation 6.3b.

Inclusion of the connection strength w.. in that decay process means that

strong connections decay more rapidly than weak connections. If input

unit i is not active, then there is no increase in connection strength.

However, the decay process (-GwJ still operates. One outcome of the

learning rules expressed in Equations 6.3a and 6.3b is that, once the

sum of connection strengths to a given output node reaches 1 it stays

there—further learning can only redistribute the total weight across

different connections.

Competitive networks suffer from a fundamental limitation. If the

task is learning to partition patterns into groups on the basis of overall

similarity (measured in terms of feature overlap), then competitive

learning may succeed. However, if the task requires overall similarity to

be ignored and category responses to be made on the basis of a particu-
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lar subset of features, then competitive learning will necessarily fail. For

example, imagine that you have three objects in front of you to put into

two groups—a newspaper, a beer bottle, and a plastic bottle. In terms of

overall similarity, the two bottles seem likely to form one category and

the newspaper another. However, ifthe task requires you to separate the

items into "recyclable" and "nonrecyclable" then (in some districts), the

newspaper and the glass bottle go into the recycling bin, but the plastic

bottle goes into the landfill bill.

How could a neural network create a different grouping than one

that is based on overall similarity? One possible solution is feedback.

Feedback provides information from outside, enriches gathered infor

mation, and thereby changes the priority of different features through

the knowledge ofan "expert." This external knowledge is not commonly

used in a competitive network; it is the realm of another class of net

works that engage in supervised learning. In the next section, we

consider one such theory.

THE RESCORLA-WAGNER MODEL (OR DELTA RULE)

The Rescorla-Wagner model (Rescorla & Wagner, 1972) was developed

in the domain of animal-learning theory, although similar models can

be traced back to Widrow and Hoff's (1960) work on electronic switch

ing circuits. In connectionist modeling, the model is often referred to as

the delta rule.

Roughly speaking, the model works in the following way. After a

stimulus is presented, the model predicts whether or not an outcome

will occur. The environment then provides the model with feedback

about whether the predicted outcome did in fact occur. If the model

made the correct prediction then it assumes there is no need for further

learning. However, if there is a discrepancy between the model's predic

tion and the feedback, learning takes place by adjusting connection

strengths. These are adjusted in a manner that should reduce the error

in future. How does the model achieve this? In what follows we describe

the model in terms as similar as possible to those used in our description

of competitive learning. As a result, the terminology is more similar to

that used in connectionist modeling than that originally used by

Rescorla and Wagner. The basic concepts, however, remain unchanged.

The model has, as before, a set of input units and a set ofoutput units

and associative connections from the former to the latter. As with com

petitive networks, the activity ofan output unit is the sum of the activi

ties of input units multiplied by their corresponding connection

strengths. The learning rule works in the following way. Ifoutput unitj

should (on the basis of feedback) be highly active, but the activation

coming from the input units is insufficient, the connection strengths

from active input units increase. On the other hand, if output unit j

should not be active, but activation is coming from the input units, then
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the connection strengths between active input units and output unitj is

reduced. Formally, the change in connection strength between input

unit i and output unit) is

(6.4)

where a, represents the activity of input unit i, Xi represents the correct

activation of the output unit;, provided by the feedback from the envi

ronment, and k sums over all input units. The term in parentheses de

notes the difference between the model's prediction and the feedback.

This difference is weighted by the activation of the input unit—only ac

tive input units can drive changes in connection strength in this system.

Stone (1986) demonstrates that the delta rule essentially carries out the

equivalent of multiple linear regression.

The delta rule is at the heart of many models of supervised categori

zation (e.g., Gluck & Bower, 1988; Kruschke, 1996; McClelland &

Rumelhart, 1985). In this section, we outline one simple way in which it

can be used, based closely on Gluck and Bower's work.

In the system we consider, features of objects are represented by input

units and categories are represented by output units. Input units have

an activity of one if the feature they represent is present, and zero other

wise. The output unit representing the correct category is assumed to

have a X of one, whereas all other category units have a A. of zero.

The system as described has two well-known properties (see, e.g.,

Minsky& Papert, 1969). First, if there is a configuration of connection

strengths that yields all the right answers, the delta rule is guaranteed

to find it. Second, there are a number ofproblems that the delta rule, in

this form, is unable to learn. For example, it cannot learn the exclu-

sive-or (XOR) problem. In the XOR problem, there are two input units

and one output unit. Ifjust one of those input units is active, then the

output unit should be active. However, if both input units are active or

inactive, then the output unit should be inactive. For example, when

playing a simple card game, you may be able "stick" or "twist," but

you have to do one ofthe two and you can't do both. If "stick" was rep

resented by one input unit and "twist" by another, the delta rule could

never learn which of the four possible responses (stick, twist, stick &

twist, neither) were allowed. This is because it needs to form a positive

connection between "twist" and "allowed," and also between "stick"

and "allowed," so stick and twist together would inevitably result in

the response "allowed."

The XOR problem can be solved by introducing a different coding

scheme; more specifically one can introduce input units that represent

the combination of features. These kind of models are commonly re

ferred to as configural cue or unique cue models (Gluck, 1991; Rescorla,

1973). In our card game example, this would mean a third input unit
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that represents "stick and twist" that is only active when both the

"stick" and the "twist" input units are active. This "stick and twist" unit

could then form a strong negative connection to the "allowed" output

unit. Together with weaker positive connections from "stick" to "al

lowed" and "twist" to "allowed," the system could solve this XOR prob

lem. This solution effectively involves turning the XOR problem into a

different problem that the network can solve.

Another solution to the XOR problem is to introduce a layer of units

between the input and output units. These are generally described as

"hidden" units and they allow the network to recode the input it re

ceives. For example, it is possible to create a hidden unit that is active

only when both input units are active. If this hidden unit has a suffi

ciently strong negative connection to the output unit, then the output

unit's activity will be close to zero when both input units are active (the

input units will increase the activity of the output unit, but this will be

offset by the reduction in activity caused by the hidden unit).

The delta rule needs to be modified before one can apply il to a system

with hidden units. This is because the environment provides no direct in

formation about what the "correct" activity ofa hidden unit should be, so

the error (A. - Zaw) for a hidden unit does not have an obvious value. One

solution is to calculate the error for output units as normal and then pass

that error to the hidden units via the connections between the two. This

solution is often described as "back-propagation" and is described in de

tail by Rumelhart, Hinton and Williams (1986). The history of this back-

propagation algorithm can be traced back to Werbos (1974).

The back-propagation system has a number of well-known proper

ties, three of which we consider here because they highlight how the sys

tem differs from a simpler delta-rule system with no hidden layer. First,

Hornik, Stinchcombe, and White (1989) demonstrated that a delta-rule

network with a hidden layer is a universal function approximator.

Roughly speaking, this means that if there is a stable relationship be

tween the input patterns and the output patterns, then there is a hid

den-layer network with a particular pattern ofconnection strengths that

can reproduce it. This contrasts starkly with the simple delta-rule sys

tem, which has clear limitations to the patterns it can reproduce.

A second well-known property ofback-propagation is that, although

there is always a pattern of connection strengths in some hidden-layer

network that will reproduce any given function, back-propagation is

not guaranteed to find it. Instead it may, during the course of learning,

get stuck in what are described as local minima. Roughly speaking, this

is where the network finds itself in a position where its current perfor

mance is not correct but where any small change in connection

strengths makes its performance worse than it already is. This again

puts back-propagation into stark contrast with the simple delta-rule

system, which will always find the solution if one exists.

Back-propagation is also generally considered to be a neurally im

plausible system. In other words, given what we currently know about
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the brain, it seems unlikely that neurons could engage in the sorts of

processes back-propagation requires. Again, this is in stark contrast to

the simple delta-rule system, which can be constructed from the known
properties of neurons (see McLaren, 1989).

INTEGRATING SUPERVISED AND UNSUPERVISED LEARNING

So far, we have discussed one model of learning in unsupervised situa

tions (competitive learning) and a different model of learning in super

vised situations (the Rescorla-Wagner model). In this section, we

consider the merits of integrated theories that can learn in both super

vised and unsupervised situations.

Why is the integration of supervised and unsupervised learning desir

able? This is most easily illustrated by considering the alternative, which

is that the learner must determine in advance whether to engage in su

pervised or unsupervised learning. If the world was neatly and predict

ably divided into situations where no feedback is ever received and

situations where feedback is always received, then this might not be too

much of a problem. However, it seems likely that for most situations

feedback is received sporadically and not entirely predictably. One would

therefore be likely to encounter the joint problems of ignoring available

feedback and failing to learn anything when feedback is unexpectedly ab

sent. There are also potential issues ofhow information gained by the su

pervised and unsupervised systems would be integrated.

Another reason why the integration of supervised and unsupervised

learning might be desirable is that it reduces the number of theories

needed to explain learning. Following the reasoning of Occam (a medi

eval monk), scientists often argue that if you have a choice between two

explanations, both of which explain the available data, you should pick

the simpler ("Occam's razor"). It's our contention that the integrated

theory we discuss next is a simpler explanation than one that posits sep

arate systems for supervised and unsupervised learning.

AN INTEGRATED MODEL

In the following, we show one way in which a simple associative model

of supervised learning (a single-layer delta-rule network) can be inte

grated with a simple associative model of unsupervised learning (a

Rumelhart and Zipser competitive network). Our approach was to start

with the delta-rule system and consider how it could be modified to also

account for situations where feedback is missing. When feedback is

present, the delta rule tries to minimize the difference between the feed

back (A.) and the prediction delivered by the weights (Law). One way to

generalize this principle to situations where feedback is absent is for the

network to produce its own feedback signal, which we designate as X'. If

feedback is present, X' is determined by that feedback. However, when



6. SUPERVISED AND UNSUPERVISED CATEGORIZATION «-"•*- 109

feedback is absent A,' is set to one for the most active output unit and zero

for all other output units (an idea borrowed from competitive learning).

Such a system does not need to know in advance whether feedback is go

ing to occur, and could be implemented by introducing fixed inhibitory

links between the output units (see Wills, Reimers, Stewart, Suret, &

McLaren, 2000, for an example of this type of decision mechanism).

Allowing the delta-rule system to generate its own feedback in this

way provides a potential integrated model of supervised and unsuper

vised learning. However, from our earlier discussion ofcompetitive learn

ing it seems likely that such a system would suffer from a potentially

serious problem. Like a competitive system with Hebbian learning, there

is a real danger that in unsupervised situations one output unit could

come to represent all presented stimuli. This is because there are only very

rarely situations where stimuli from different categories have absolutely

nothing in common. If stimuli from different categories have some com

mon features, then the "winner" of the first stimulus has an advantage

when the second stimulus is applied, due to its stronger connections to

the features the first and second stimuli have in common.

Rumelhart and Zipser (1986) included further sources ofcompetition

besides the "winner-take-all" competition in an attempt to reduce this

problem, and we modified the delta rule in a similar way. Specifically,

we modified the delta rule so that it included a sort ofweight decay pro

cess and a process that scales weight changes by the number of active in

put units. Hence, our modified delta rule is

) (6'5)

where G is a learning rate parameter, n is the number of active input

units, a. is the activity of input unit i, w.j is the connection strength from

input unit i to winning output unit;, and X' is the internally generated

feedback signal discussed earlier, k sums over all input units.

All that we've done here is add the error-correcting component of the

delta rule (X1 - Zaw) to Rumelhart and Zipser's learning algorithm

(Equation 6.3b). As a result, this integrated model makes predictions

about unsupervised learning that differ from those made by Rumelhart

and Zipser's competitive learning system. Specifically, our system adds

the constraint that connection strengths will change only if the internal

feedback signal X' is not fully predicted by the network (i.e., if A.1 - law

does not equal zero). This leads to the prediction that effects such as

blocking (described in the next section) should be observable in unsuper

vised learning. In contrast, Rumelhart and Zipser's model predicts that

blocking will not be observed in unsupervised learning because their

learning rule is a variant of Hebbian learning and hence contains no er

ror-correcting component. In later sections, we report data that indi

cates blocking does occur in free classification, and discuss simulations
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that show that our system can predict blocking in free classification but

that the Rumelhart and Zipser system cannot. In the next section we
provide a very briefoutline ofthe phenomenon ofblocking for the bene

fit of those who are not familiar with it.

BLOCKING

The term blocking was coined by Kamin (1969) to describe a phenome

non he observed in rats. In Kamin's experiment, rats learned in an initial

phase that pressing a bar leads to a food pellet. After this contingency

was established, the first phase started. In the first phase, a noise was

sometimes presented. When the noise was on, the rat received an electric

shock. Rats quickly suppressed responding in the presence of the noise,

as measured by frequency of pressing the bar. In the second phase, the

noise was always accompanied by a light. When the noise and the light

were on, the rats got shocked. Again, the rats avoided pressing the bar

during presentations of the noise-light compound. In the final phase,

the light was presented alone, and Kamin found that the rats did not

suppress responding in the presence of the light. In other words, the rats

appeared not to have learned the association between light and shock.

Kamin also ran a control group ofrats. The control groupwas identical

to the experimental group with one exception-the control group skipped

the first phase (noise only). In the final phase, the control group showed

strong suppression in response to the light, thereby indicating that they

had learned the connection between the light and the shock in the second

phase. Table 6.1 summarizes the design of Kamin's experiment.

How might this difference between the control and experimental groups

be explained? Kamin's explanation employed the notion of "surprise." The

experimental group had learned that the noise predicts shock in the first

phase. Therefore, the shock was not surprising in the second phase. Ac

cording to Kamin, learning only occurs if the outcome is surprising, so the

rats didn't learn the connection between the light and the shock. However,

the control group skipped the first phase and therefore was surprised in the

second phase by the shock. Consequentially in the second phase, the rats

learned the connection between the light and the shock as well.

TABLE 6.1

Kamin's (1969) Blocking Experiment

Group Stage One Stage Two Test

Experimental N-» Shock LN-» Shock L

Control LN -»Shock L_

/Vote. "L" denotes a light, "N" a noise.
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The delta rule predicts that blocking should occur. Consider a simple

representation of the problem where one input unit represents "tone,"

another "light," and an output unit represents "shock." There are connec

tions from the input units to the output units, which start at zero. As

suming sufficient training, Phase 1 leads to the connection strength

between the "tone" input unit and the "shock" output unit being close to

X. Therefore, in Phase 2 when both the "tone" and "light" input units are

active and a shock occurs, there is only a very small error (A.- Law) at the

"shock" output unit because Law is close to X. This means that the con

nection strength between the "light" and "shock" units cannot increase

substantially, leading to blocking. However, if the first stage is skipped

the initial error when the tone and light are presented together is high, so

substantial connections form from both input units to the output unit.

Evidence for blocking can also be found in humans. For example,

Dickinson, Shanks, and Evenden (1984) demonstrated a blocking effect

in the context of a simple computer game. The game involved tanks

driving through an invisible minefield. In the experimental condition,

participants first experienced an "observation" phase, where they were

asked to observe a number of occasions of a tank driving through the

minefield and either blowing up or not. Following this, the participants

were given the opportunity to shoot at the tanks. Finally, they were

asked to rate the effectiveness of the gun in destroying the tanks. In the
control condition, the initial observation phase was omitted. Partici

pants in the experimental condition gave lower ratings of the gun's ef

fectiveness than participants in the control condition did. For the

experimental group, the development of a "minefield" -» "tank ex

plodes" association in the observation phase blocks the development ofa

"gun fired" -> "tank explodes" association in the second phase.

The demonstration of blocking in humans is not limited to this kind
of "ratings" task. For example, Martin and Levy (1991) demonstrated
blocking in human eyelid conditioning.

EXPERIMENT

The purpose of our experiment was to demonstrate an effect analogous
to blocking in the absence of feedback. Previous research demonstrates
that category learning can proceed successfully in the absence of feed

back (e.g., Homa & Cultice, 1984; Wills & McLaren, 1998). Additionally,
the current study follows on from Zwickel and Wills's (2002) demon
stration ofa blocking-like effect in a situation where some feedback was

present, but it was very sparse and not item specific.

The design of the current experiment is shown in Table 6.2; the let

ters indicate sets of features that make up the abstract stimuli we pre

sented. In Phase 1, examples of Category 1 were created from a base
pattern that contained feature sets A and B. Examples of Category 2

were created from a base pattern that contained feature sets C and D.
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Category 1

Category 2

ZW1CKEL AND WILLS

TABLE 6.2

Experimental Design

Phase 1

AB

CD

Phase 2

AE

GF

Test

EF

/Vote. Each letter represents a set of six features. For example, Category 2 in Phase 2

contains feature sets G and F The redundant feature set E is underlined.

Note that the labels Category 1 and Category 2 are essentially arbi

trary in a free-classification task—they could be reversed without

changing anything in the design or execution of the experiment. As Ta

ble 6.2 illustrates, once the participant had mastered the AB versus CD

categorization they were transferred to a second categorization. The

testing phase started after the participants had mastered this second

categorization. The datum of central importance in this design is the

category to which the test stimulus presented in the test phase is allo

cated. The response to a single stimulus is chosen as the dependent

variable because subsequent decisions may be contaminated by learn

ing on previous test trials.

Note that feature set E occurs only in situations where the infor

mation it provides is redundant. In Phase 2 the stimuli can be identi

fied as Category 1 on the basis of whether they contain "A"

features—an association already learned in Phase 1. Hence, through

analogy to selective learning effects in tasks with feedback, one might

consider that E develops little control over responding. In contrast, G

and F may develop more control over responding as they are the only

features in Phase 2 that predict the presence of a Category 2 stimulus.

If blocking occurs in free classification, one would therefore expect

participants to place stimulus EF into Category 2 (i.e., the same cate

gory as they used for stimulus GF). This is because F's association to

Category 2 is predicted to be greater than E's association to Category

1, due to E, but not F, being blocked.

Method

Participants and Apparatus. Thirty-two psychology students

from the University of Heidelberg participated to fulfill partial course

requirements or for a small reward. Participants were tested in groups
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in a quiet computer room. Stimulus presentation was on color monitors

connected to standard PCs running the DMDX software package

(Forster & Forster, 2003). Responses were collected via the left and right

CTRL keys on standard PC keyboards.

Stimuli. Each stimulus was made up of 12 small pictures (hereaf

ter "elements") taken from a set of 72 that have been used in a number

of previous experiments (e.g., Jones, Wills, & McLaren, 1998). See

Fig. 6.1 for an example stimulus. For any given stimulus, the 12 ele

ments were randomly arranged in a square of three rows with 4 ele

ments in each row, and were surrounded by a gray rectangle outline 5

cm in height and 4 cm in width. Each of the letters A to G in Table 6.2

represents a set of six elements. The stimuli actually presented to par

ticipants were generated by random distortion of the base patterns

described in Table 6.2. Each element in a base pattern was given a 10%

chance of being replaced by a randomly selected element from the

other base pattern. An example may be helpful. To create an AB stim

ulus in Phase 1, the six A elements and the six B elements were ran

domly arranged in the four-by-three grid of the stimulus. Each

element was then given a 10% chance ofbeing replaced by a randomly

selected element from set C or D. This method of stimulus construc

tion produces training examples that are composed predominantly of

elements characteristic of a particular category but that also exhibit

considerable variability.

In order to control for effects of the differential salience ofthe elements,

participants were divided into pairs. The assignment of picture elements

FIG. 6.1. An example stimulus.
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to letters was randomly determined for each pair of participants. One

participant in each pair received the stimuli described in Table 6.2 whereas

the other received a design where E was transposed with F and A with G.

Hence, the putatively redundant elements were E for one member of the

participant pair, whereas they were F for the other member.

Procedure. The main experiment was preceded by some general

written instructions and a brief practice phase to familiarize participants

with the procedure. The experiment then proceeded in blocks of 24 trials.

On each trial, a stimulus was presented for 800 ms and followed by a

mid-gray mask that was presented for 1,200 ms. If a response was not

detected within 2,000 ms of stimulus onset, the trial terminated with a

message stating that the participant had responded too slowly and asked

them to speed up. The participant was then moved on to the next trial.

Each block comprised the sequential presentation of 24 stimuli, 12

from each of the two categories. At the end of each block the percentage

ofcorrect responses made by the participant was calculated, but not pre

sented to the participant. Clearly, percentage correct has a slightly dif

ferent interpretation in a free classification task to a task with trial-

specific feedback as the relationship between Categories 1 and 2 and the

two response keys is arbitrary. Hence, percentage correct was computed

by assuming for each block that the key that was pressed most often

when stimuli of Category 1 were presented represented the correct an

swer to Category 1. The other key was assumed to be the correct answer

for Category 2. When this "percentage correct" score exceeded 83%, the

participant was moved on to the next phase of the experiment. Partici

pants were also moved on to the next phase if they completed six blocks

without reaching this criterion.

Results and Discussion

Participants completed a mean of 5.19 blocks in Phase 1, and a mean of

5.25 blocks in Phase 2. Most people did not achieve high levels of perfor

mance in this task, with only 4 of the 32 people tested reaching the 83%

criterion in both phases. Given the total lack of feedback and the rela

tively small amount of exposure to complex and unfamiliar stimuli, this

is perhaps unsurprising. We therefore decided to exclude only those par

ticipants whose performance in Phase 2 was so poor that their response

to the test stimulus EF could not be interpreted. In order to be included, a

participant's dominant response to Category 1 stimuli in Phase 2 had to

be different from their dominant response to Category 2 stimuli in that

phase. For example, if when a Category 1 stimulus was presented the

participant was more likely to press the right-hand key, then in order to

be included they had to be more likely to press the left-hand key in re

sponse to Category 2. In other words, they should not predominantly

assign the stimuli of both categories to the same key.
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Sixteen of the 32 participants passed this criterion. However, one

would not expect participants to demonstrate blocking unless they have

learned the Phase 1 categorization to some extent. We therefore divided

our remaining participants into "learners" and "nonlearners" by apply

ing the same criterion to performance in Phase 1. Finally, we classified all

16 participants on the basis of whether their response to the EF test stim

ulus was consistent or inconsistent with blocking. Their response was

classified as consistent if they responded to EF using the key they had pre

dominantly used to respond to GF in Phase 2. If they used the other key,

they were classified as inconsistent with the blocking hypothesis.

Looking at "fable 6.3, one can see that the majority of the learner's

classifications of the test stimulus were consistent with the blocking hy

pothesis. Tested against a null hypothesis ofrandom responding, the ev

idence for our blocking hypothesis misses significance by the narrowest

of margins, p = 0.05, one-tailed, on a binomial test. A one-tailed test is

appropriate here because the direction of the effect was predicted in ad

vance on the basis of previous evidence in supervised learning (see ear

lier Blocking section) and in a situation where trial-specific feedback

was absent (Zwickel & Wills, 2002).

Further inspection of Table 6.3 indicates that nonlcarners do not

show behavior consistent with blocking. This is as we would predict, be

cause blocking should occur only if the Phase 1 categorization is

learned. A contingency chi-square confirms that the proportion of

blocking-consistent responses is significantly affected by performance

in Phase 1, x2(l)=6-l 1', p < 0.05. Taking these two analyses together, our
data seem to support the conclusion that a blocking-like effect occurs in

unsupervised learning. Additionally, all four participants that passed

the 83% criterion in both phases made a blocking-consistent response to

the test stimulus, p = 0.06, one-tailed, on a binomial test.

One further aspect of these results is that nonlearners appear to

show nonrandom responding in the opposite direction to that pre-

TABLE 6.3

Results of the Experiment

Learners Nonlearners

Consistent with blocking 8 1

Inconsistent with blocking 2 5

'No corrections have been applied for the low expected frequencies of some of the
cells. It has been found that even small expected frequencies do not increase the chance of

type I errors (Overall, 1980). A general discussion of this issue can be found in Howell

(2002, pp. 151-152).



116 i«^ ZW1CKEL AND WILLS

dieted by the blocking hypothesis. Although this effect falls short of

significance, p = 0.22, two-tailed, on a binomial test, it is interesting to

speculate what may be behind this pattern. One possibility is that par

ticipants who did not learn the category structure in Phase 1 developed

something ofa mix of the Phase 1 and Phase 2 prototypes. These people

might therefore represent the stimuli of Category 1 as derived from a

prototype ABE and stimuli of Category 2 as derived from a prototype

CDGF. If one accepts Pearce's (1987) assumptions about the relation

ship between shared elements and similarity, then test stimulus EF is

more similar to ABE than to CDGF. This is because Pearce assumes that

similarity is affected by the proportion of shared elements. EF contains

one third of ABE's elements but only one quarter of CDGF's elements,

so EF is predicted to be more similar to ABE than to CDGF. As a result,

participants would be predicted to place EF into Category 1, which is

opposite to the effect predicted by blocking.

MODELING

The results ofour experiment indicate that a blocking-like phenomenon

occurs in unsupervised learning. It has been our contention throughout

this chapter that such an effect is predicted by our integrated model but

not by Rumelhart and Zipser's (1986) competitive-learning model. In

this section we show how we've supported this conclusion through

computer simulations of both models.

We implemented the Rumelhart and Zipser learning rule (Equations

6.3a and 6.3b) in a network consisting of 60 input units and 2 output

units. Each of the elements composing our stimuli was assigned to an

input unit and the activation of that unit was set to one if the feature

was present and zero otherwise. We ran the simulation 32 times, once

for each participant in our experiment. For each simulation, each stimu

lus presented to a given participant was presented to the input units of

the corresponding simulation. Stimuli were presented sequentially, and

in the same order as they had been to the corresponding participant. The

winning output unit for the presented stimulus was simply defined as

the most active output unit. The learning rule was then applied and the

next stimulus presented. The network's response to the test stimulus

was coded as blocking-consistent or blocking-inconsistent using the

same procedure we had used for the participants' responses (see the sec

tion Results and Discussion). Simulated participants were also catego

rized as "learners" or "nonlearners" using the same procedures we had

used for the participants. The data from the "learners" in this simulated

experiment were then assessed for the significance of the blocking effect,

tested against a null hypothesis of random responding.

Equation 6.3b includes the learning rate parameter G. We therefore per

formed 50 simulated experiments across which G varied from 0.001 to

0.491 in steps of 0.01. None of our 50 simulated experiments produced a
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significant blocking effect, reinforcing our conclusion that the Rumelhart

and Zipser system does not predict blocking in this experiment.

Next we replaced the Rumelhart and Zipser learning rule with our

modified delta rule (Equation 6.5) and repeated the 50 simulated experi

ments. This time, out of the 50 runs, 42 runs were significant. The non

significant runs all occurred between the learning rates of 0.001 and

0.081, indicating that this prediction of our model is robust across a

wide range of learning rates.

OTHER MODELS

Throughout this chapter, we've deliberately concentrated on two well-

known and comparatively simple associative models of categorization

that can be straightforwardly applied to the experimental procedures

and stimuli we employed. In so doing, it was not our intention to sug

gest that the Rumelhart and Zipser or the Rescorla-Wagner models are

the only, or even the best, models of unsupervised and supervised cate

gorization respectively. In what follows we discuss the validity of some

of the assumptions underlying the models we have used and consider

some alternative approaches to modeling supervised and unsupcrvised

categorization.

Stimulus Representation

The Rescorla-Wagner and Rumelhart-Zipser models both assume an

elemental stimulus representation. For example, in our particular ap

plications of these models we have assumed the presence of an input

unit for each of the picture elements that comprise the stimuli. This

kind of elemental stimulus representation can be contrasted with ex

emplar stimulus representation. In exemplar stimulus representation,

each presented stimulus has its own unique representation. Exemplar

models are being increasingly employed in the study of categorization

and associative learning because of their proven success in very pre

cisely modeling categorization behavior in certain circumstances (see,

e.g., Nosofsky, 1986). There is also some evidence in both humans

(e.g., Shanks, Darby, & Charles, 1998) and other animals (e.g., Pearce

& Redhead, 1993) that appears to favor exemplar theories over compa

rable elemental theories. On the other hand, there are phenomena that

seem difficult to explain if one assumes a purely exemplar representa

tion but that can be easily explained if elemental representation is as

sumed (e.g., Gluck, 1991; Kruschke, 1996). There is also some evidence

that suggests people can flexibly apply exemplar or elemental stimulus

representations in response to differing task demands (e.g., Williams,

Sagness, & McPhee, 1994).

It is also likely that, as suggested in General Recognition Theory

(Ashby & Townsend, 1986) and stimulus-sampling theory (Estes, 1950),
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even two physically identical stimuli will have differing input representa

tions due to variations in our perceptual system. The picture is yet fur

ther complicated by evidence that suggests the act of categorization can

itself affect our stimulus representations (e.g., Schyns & Rodet, 1997).

Overall, it seems likely that the stimulus representations we have em

ployed in this chapter are a simplification of the true nature of stimulus

representation.

Attentional Processes

One way of thinking about the phenomenon of blocking is as a demon

stration that learning is driven by surprise. In the Rescorla-Wagner the

ory, surprise can be thought of as directly affecting learning. This is

because the learning rule states that the change in connection strength

is proportional to the difference between the predicted status of the out

come (Law) and its actual status (X). Some other associative theories

(e.g., Mackintosh, 1975; Pearce&Hall, 1980) suggest that surprise acts

indirectly through some kind of attentional process. The phenomenon

of blocking does not, in itself, distinguish between these two classes of

explanation. Therefore, although our discovery of a blocking-like effect

in free classification indicates that unsupervised learning is sur

prise-driven, it does not uniquely support the Rescorla-Wagner formu

lation we have employed in our model. An alternative (or additional)

approach would have been to add an attentional process to the

Rumelhart and Zipser model.

Plasticity-Stability Dilemma

The plasticity-stability dilemma is that a system must be able to learn in

order to adapt to a changing environment (i.e., it must be "plastic") but

that constant change can lead to an unstable system that can learn new

information only by forgetting everything it has so far learned. The

back-propagation algorithm is well known to suffer from stability

problems (see, e.g., the discussion of "catastrophic forgetting" in

McCloskey & Cohen, 1989). Stability is also a problem for both the

Rescorla-Wagner and the Rumelhart and Zipser systems.

Numerous suggestions have been made for solutions to the plastic

ity-stability dilemma and there is insufficient space to deal with them

all here. One solution (theAPECS system) is covered in chapter 7. An al

ternative model that is more directly applicable to unsupervised learn

ing is Grossberg's Adaptive Resonance Theory (see, e.g., Grossberg,

1987). Adaptive Resonance Theory is somewhat related to the

Rumelhart and Zipser system, but it adds a top-down process. Like

Rumelhart and Zipser, input unit activity leads to one category unit

being more active than the others. Unlike Rumelhart and Zipser, this

category unit does not necessarily "win." It will do so only if down-
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ward connections from the category unit to the input units reproduce

the input sufficiently well. If the most active unit does not predict the

input very well, the same test is performed for the next most active cat

egory unit. If none of the current category units pass the test, a new

category unit is created and designated the winner. In this way, the

system remains able to learn about new situations while protecting

what has already been learned by creating new representations to ca

ter for the new information.

Decision Processes

In the Rumelhart and Zipscr model, and in our model, the category of

a presented stimulus is decided by finding the most active output

unit. The process by which this happens is not specified, but is as

sumed to be errorless. In other words, the most active unit will al

ways be the one that is selected. In reality, any process is likely to be

imperfect and so sometimes some other unit will be selected, particu

larly if there are two or more units whose activations are similar. One

very common way of representing this decision process is through

the ratio rule. Next we consider one particular type of ratio rule, the

exponential ratio rule.

The ratio rule compares the activity of each output unit to the ac

tivity of all other output units. In this way, a highly active output

unit is selected with a higher probability if all other output units are

quite low in activation than if the other units have a high activation

too. In the exponential ratio rule, an additional parameter k adjusts

how much influence the relative strengths of the category units have.

If k is large, the most activated category is nearly always chosen. If k

is small, the relative strengths of activation have very little influence

on the category decision.

Formally, the exponential ratio rule is

Prob(category x) = —

where the activation of output unit x is represented as ox and v is the

number ofoutput units. Prob(categoryx) is the probability that category

x is selected.

The ratio rule is widely used in the modeling of categorical decision

processes (e.g., Gluck & Bower, 1988; Kruschke, 1993; Nosofsky,

1986). However, there is mounting evidence that the exponential ra

tio rule is incorrect and that an alternative process based on the mu

tual inhibition of output units may be more appropriate (see, e.g..

Wills et al., 2000) .
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Level of Analysis

In this chapter, we've concentrated on theories that attempt to eluci

date the specific processes that underlie supervised and unsupervised

category learning. The two models we've looked at in most detail at

tempt to do this with processes that are neurally plausible. However,

this is not the only approach one can take to understanding categori

zation. One can, for example, employ a more abstract level of analysis

and consider the general problems that any categorization system

must solve. In this section, we describe one theory that takes this ap

proach—Anderson's rational model.

The core idea ofAnderson's rational model (e.g., Anderson, 1991) is

that, as the brain is adapted to its environment, much insight into hu

man information processing can be gained by reflecting on the nature

of information in that environment. If Anderson's model were a nor

mative model, it would employ all relevant probability information

about the category structure in the environment. The model is de

scribed as rational rather than normative because it also takes into ac

count some considerations about the computational complexities of

processing this information.

The model is expressed through Bayesian mathematics. For example,

the probability that a person is 20 years old, given that they are a stu

dent, is quite high. This is called a conditional probability, and is ex

pressed as P(twenty | student). Imagine you are walking down the

street of a particular town and meet a 20-year-old. How likely is it that

this person is a student? Another way of asking the same question is to

ask for an estimate of P(student | twenty). Your estimate will, of course,

be affected by P(twenty | student), but also by the overall probability

that anyone is a student, P(student).

This is basically the way the rational model calculates the probabili

ties with which a stimulus comes from a specific category. Ifa new stim

ulus has to be categorized, the model determines the probability with

which each stimulus feature would occur, given that the stimulus co

mes from a particular category. The probabilities for all the features are

multiplied together, giving a single number for each category. The stim

ulus is considered to belong to the category that produces the largest

number. When no prior knowledge is available, or the calculated

number is below a certain threshold, a new category is created.

SUMMARY

Categorization—dividing the world into groups of things—has been

studied through two basic types ofexperiments. The first type consists

of studies where each stimulus is accompanied or followed by accurate

information about category membership. These studies are by far the

most common but the level of feedback given seems unlikely to be
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commonly available outside the laboratory. The second type of

study—free classification—goes to the opposite extreme and provides

no feedback whatsoever.

These two basic types of categorization experiments are reflected in

the two basic types of associative categorization models: supervised

models and unsupervised models. In this chapter, we concentrated on

one comparatively simple associative model of each type. The first was

the Rumelhart and Zipser competitive-learning system, which is a

model of unsupervised learning. The second was the Rescorla-Wagner

theory (aka. simple delta-rule network), which has been widely applied

to human and animal data.

We went on to outline the case for integrating models of supervised

and unsupervised learning. Our main argument was that only an inte

grated system could make use offeedback when it was available but not

be paralyzed when feedback was unexpectedly absent. We then dis

cussed one way in which competitive learning and the delta rule could

be combined to create a comparatively simple integrated model.

The integrated model we proposed predicts that blocking-like effects

should also occur in the absence of feedback, whereas the Rumelhart and

Zipser model predicts that they will not. The results of our free-classifi

cation study suggest that blocking-like effects do indeed occur in the ab

sence of feedback. These results therefore provide another reason for

favoring our integrated model over the component models from which

it was constructed.

There are a number of respects in which the model we have proposed

is likely to be a simplification of a fully adequate model of categoriza

tion. These respects include our assumptions about stimulus represen

tation, the absence of an attentional process, the absence of a process

that addresses the plasticity-stability dilemma, and the absence of a

realistic decision mechanism.
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