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Abstract

Artificial creatures form an increasingly important component of interactive computer games. Examples of

such creatures exist which can interact with each other and the game player and learn from their experiences.

However, we argue, the design of the underlying architecture and algorithms has to a large extent overlooked

knowledge from psychology and cognitive sciences. We explore the integration of observations from studies of

motivational systems and emotional behaviour into the design of artificial creatures. An initial implementation

of our ideas using the “sim agent” toolkit illustrates that physiological models can be used as the basis for

creatures with animal like behaviour attributes. The current aim of this research is to increase the “realism” of

artificial creatures in interactive game-play, but it may have wider implications for the development of AI.

1 Introduction

Over the last few decades Artificial Intelligence (AI) has

become more than a philosophical consideration or sci-

ence fiction plot device. With hardware advances it has

become possible to incorporate more powerful AI into

games as well as increasingly complex graphics and en-

vironments. A recent poll of developers showed a sev-

enfold increase in CPU time used for AI in the average

game since 1997 (Johnson, 2002). A large proportion

of this interest in AI is in improving the behaviour of

NPCs (non-player characters), making them more believ-

able and engaging. It is important to stress the difference

between this ‘character-based’ AI and that in strategic or

turn-based games. Isla and Blumberg (2002) elucidate

this in a recent paper:

“These latter categories might be considered attempts

to codify and emulate high-level logical human thinking.

Character-based AI, on the other hand, is an exercise in

creating complete brains. Strategic and logical thinking

in this type of work usually takes a back seat to issues of

low-level perception, reactive behaviour and motor con-

trol....work is often rendered with an eye towards recre-

ating life-like behaviour, and emotion modelling and ro-

bustness are often also central issues.” (2002, p.1)

Essentially ‘character-based’ AI is a move away from

programming an artificial opponent capable of playing

against the human mind in intellectual or strategic games

such as chess. Rather than refining specific high-level log-

ical thinking, the aim is to capture life-like behaviour and

move towards modelling a complete mind. Thus it aims

to populate the game environment with agents who act in

a realistic and capable manner. Enemy ‘bots’ in games

such as “Quake” or “Half-life” do not need to understand

chess or engage in complex reasoning, but they do need

to navigate their environment and know when to attack

the player. These virtual ‘creatures’ should be able to per-

ceive and learn about the environment on their own, make

decisions, and in some instances interact with other ‘crea-

tures’ in a limited way.

The applications for this type of AI are becoming in-

creasingly popular in commercial games, and fairly so-

phisticated designs are emerging. For example Peter

Molyneux’s game ‘Black and White’ included creatures

with impressive learning and the potential to develop in-

teresting ‘personalities’ depending on how the player in-

teracted with them. ‘Bots’ in games such as the “Quake”

series need to navigate a 3D environment realistically as

well as try to kill the player without being shot in the pro-

cess. In later incarnations of similar games, for exam-

ple “Return to Castle Wolfenstein”, the bots also interact

with each other and can develop limited team-based plans.

However at present knowledge from psychology and cog-

nitive sciences about the processes of the mind appears to

a large extent to be under used or overlooked in the design

of game AI.

This is clearly an interesting area not just in terms

of making better games, but in the development of new

AI techniques and algorithms. Laird (2002) argues that

computer games provide challenging environments and

offer many isolated research problems. As the worlds

become more realistic, so too must the behaviour from

their characters become more complex. Psychologists, in

particular those who have worked on animal cognition,

have been studying and detailing the behaviours of au-

tonomous creatures in complex environments far longer
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than AI researchers have been attempting to model them.

Yet many designers of ‘virtual creatures’ seem unaware of

recent developments in psychology and how these might

be applied. Emotion provides a good example of one such

area of research.

Laird mentions that “emotion may be critical to cre-

ating the illusion of human behaviour”, but seems at a

loss how to go about incorporating this - “Unfortunately,

there are no comprehensive computational models of how

emotions impact with behaviour. What are the triggers for

anger? How does anger impact other behaviours?” (Laird

(2002), p.4).

Isla and Blumberg (2002) also discuss the modelling

of emotions in character-based AI. They point out that

much of the work done so far uses emotion as a “di-

agnostic channel”; a convenient indicator which can be

routed from an internal “emotion” value straight to a

facial-expression or visual animation. This value is usu-

ally derived from a series of expressions to calculate how

‘happy’, ‘sad’ or ‘angry’ the character is feeling. Isla &

Blumberg assert that “emotions clearly play a far larger

role in our behaviour ... (they) influence the way that we

make decisions, the way we think about and plan for the

future and even the way we perceive the world” (2002, p.

4). The general approach of Blumberg and other mem-

bers of the MIT ‘synthetic character research group’ is

that Game AI should be inspired by work from animal

learning and psychology. For example they discuss how

the Pavlovian conditioning paradigm can be used, and the

importance of the character being able to form predic-

tions about the world. With regard to emotions, they dis-

cuss their possible application in “action-selection func-

tions”, and making exploratory decisions through a “cu-

riosity emotion”. However, they make no reference in this

case to work done in psychology.

Emotion is certainly very subjective and personal, and

at first seems quite inaccessible to the manipulations and

measurements of science. However psychologists have

been theorising about emotion for over a century. Since

William James first tried to define emotion in his 1884

thesis, research has been done to investigate what emo-

tion is, and more importantly if and how it interacts with

the rest of our cognitive system. James himself contended

that emotions were nothing more than the feelings which

accompany bodily responses to a stimuli. Recent work in

cognitive neuroscience provides evidence to the contrary:

emotions are linked to brain function, to the point that

neural systems of emotion and other mental behaviour are

interdependent (Gazzaniga, Ivry and Mangun, 2002). The

implications of these results are now finding interest in

current work in AI. In this work it is important to focus

away from the subjective, conscious ‘feelings’ of emo-

tion and study the underlying systems which give rise to

them and their impact on behaviour. Generally, it seems

that these systems are heavily involved in reactive mech-

anisms and learning, and possibly also decision making

and attention.

This paper describes our work towards the develop-

ment of a basic agent architecture which incorporates mo-

tivational and emotional elements derived using ideas and

findings from psychology to inform the design. In partic-

ular this aims to incorporate some emotional mechanisms

that have a deep effect on the decision making process.

The remainder of this paper is organised as follows:

Section 2 reviews literature on the psychology of ani-

mal motivation, Section 3 outlines work from current de-

velopments in artificial intelligence, Section 4 describes

our working environment, Section 5 introduces the archi-

tecture of our artificial creature agents, Section 6 gives

some initial results and finally Section 7 draws conclu-

sions from our current study and considers how the work

might be extended.

2 Animal Motivation Theories

In this section we explore some key observations from

animal motivation theories and their implications for the

design of our model for an artificial creature.

2.1 Miller’s equilibrium model and the

approach-avoid conflict

Generally speaking, animals react to signals they receive

from environmental stimuli. Depending on the nature

of the stimulus itself and knowledge of past experience

with this type of object, the animal will either approach

or avoid it. An approach-avoidance conflict occurs when

these signals impel an animal towards these two incom-

patible forms of action.

Gray (1987) notes that conflict of this kind is extremely

common. For animals, it is particularly apparent in their

behaviour towards a novel object. Novelty is an important

stimulus for both eliciting fear (avoidance) and encourag-

ing exploration (approach). In general, animals appear

to avoid extremely novel stimuli, but be attracted to ones

which are mildly novel.

Experimental psychologist Neal Miller performed a se-

ries of studies on the approach-avoid behaviour of rats.

The resulting findings allowed him to develop a model

which incorporates the various factors involved.

In Miller’s basic experimental situation, a rat is trained

to run down an alley to get a food reward. However, every

time it reaches the goal, it receives a shock. This sets up

a conflict situation. Miller observed that the rat ended up

oscillating round an equilibrium ‘stopping point’ a certain

distance from the goalbox. The distance of this point from

the goal is defined by the strength of the tendencies to

approach and avoid the food. The diagram below shows

the factors that affect these tendencies and the resulting

decision. Miller’s model is represented in Figure 1.

Note that the factors include both internal states of the

rat as well as external information from the environment

and previous experience. Increasing the hunger or de-
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Figure 1: Miller’s equilibrium model. (Adapted from

Gray (1987), p.142.)

creasing the shock intensity will in turn affect the ap-

proach/stop tendencies, and move the equilibrium point

closer to the goal. If the approach tendency is much larger

than the stop one, you would expect the rat to actually

reach the food.

Another point is that ‘distance to the goal’ is a criti-

cal factor in both ‘approach’ and ‘stop’ tendencies. How-

ever distance cannot affect them in an identical manner:

if this was the case then whichever was stronger at the

start point would be stronger at the end, resulting in a be-

haviour where the animal either stops as far as possible

from the goal, or completely approaches it.

Work in Miller’s (1951, 1959 as cited in Gray 1987)

laboratory demonstrated that the strength of the avoidance

tendency increases more rapidly with nearness to the goal

than that of approach.

Miller noted that there are two main forces behind the

tendencies: those that are internal to the animal (such as

hunger or other ‘drives’), and those relating to the envi-

ronment and the stimulus itself. They pointed out that

there are no internal sources of motivation for the avoid-

ance tendency, and hence it is more purely dependent on

environmental factors than the approach tendency. This

helps explain why distance has a greater effect on the

avoid tendency, especially when near to the goal.

It is clear then that the action towards a certain object is

not clear-cut. It is not a simple case of approaching food

and avoiding negative objects. Where an animal has learnt

to associate pain with an otherwise positive stimulus it

may avoid it; conversely if it is hungry enough it will still

approach food even if this means receiving a shock.

In terms of programming design, this means that it is

wrong to divide the world up into ‘good’ and ‘bad’ ob-

jects. Instead, every object has the potential to be an over-

all positive-approach stimulus or a negative-avoid one. It

depends not just on the properties of the object, but also

what it is associated with and the current internal condi-

tion of the animal. This notion of approach-avoid con-

flicts forms the core of our system design.

2.2 Motivation systems

It is difficult to find one all-inclusive definition of motiva-

tion, instead there are various different features which are

important to consider.

Firstly, a motivated action differs from a reflex because

it is not simply a reaction to an external stimulus. It is

also in someway ‘driven’ by internal states. Teitelbaum

(1977, as cited in Toates 1986) argues that “To infer moti-

vation we must break the fixed reflex connection between

stimulus and response.” Teitelbaum feels that motivation

is always directed towards obtaining a certain goal.

Epstein (1982, as cited in Toates 1986) also argues that

motivations are complex properties that arise from both

external and internal factors. He also considers a third

factor: what the animal remembers from past encounters

with an incentive object, and the consequence of this en-

counter.

There are a variety of different models of motivation, of

which the simplest is a homeostatic model. Essentially, a

homeostatic model is about maintaining essential param-

eters (e.g. energy level, fluid level) at a near constant ‘nor-

mal’ level. If there is a disturbance then corrective action

is taken. Homeostatic mechanisms are driven by ‘neg-

ative feedback’, which can ‘switch off’ motivation once

the deficit has been recovered. The homeostatic model is

represented in Figure 2.

According to Grossman (1967, as cited in Toates 1986),

there are two types of motivation systems: one which is

homeostatic and includes hunger, thirst and other internal

factors, while the other is only driven by external factors

and includes sex, exploration and aggression.

This dichotomy, however, is too simple, and models

developed later do not separate out motivations into these

two different types. Homeostatic mechanisms may play a

part in explaining the negative-feedback aspects of hunger

and thirst, but by themselves are not sufficient as a model.

There are other factors to take account of, such as the

availability or ‘cost’ of food - when access to food is made

difficult and more energetically costly, animals eat less

Toates (1986).

Homeostatic models which look at correcting an en-

ergy depletion also do not explain why animals (or indeed

people) will overeat if provided with sweet or tasty foods.

A final problem is that they do not adequately explain how

having a water deficit can then steer an animal towards a

water-related goal: in other words they miss the link be-

tween the internal state of the animal, and acting towards

the external incentives available.

In Bindra’s theory (1976, 1978, as cited in Toates

1986), the emphasis is on the role of ‘incentive stimuli’
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Figure 2: Homeostatic model of motivation. (Adapted from Toates (1986), p.37.)

as well as internal states in the motivation of behaviour.

An incentive stimulus is an object or event judged as ‘he-

donically potent’ - one which is affectively positive or

negative. This is similar to Miller’s approach/avoid ten-

dencies; an animal will react in an appetitive way to he-

donically positive incentives, and in an aversive way to

negative ones.

Whether a stimulus is seen as hedonically potent de-

pends on various factors, including previous experience

with that stimulus as well as physiological states. An ani-

mal may assimilate information about a stimulus which it

sees as ‘neutral’; later on, if the physiological state of the

animal changes, that same object could become a positive

incentive. For example, an item of food may appear as

neutral while the animal is satiated, but once it becomes

hungrier that same piece of food becomes a positive in-

centive which elicits an appetitive reaction.

Bindra develops these ideas into a concept of a ‘cen-

tral motivational state’ (c.m.s), which he defines as “a

hypothetical set of neural processes that promotes goal-

directed actions in relation of particular classes of incen-

tive stimuli” (Bindra, 1974 as cited in Toates 1986).

Figure 3: Bindra’s model of motivation. The food acts

as an incentive stimuli in the feeding motivation system.

(Adapted from Toates (1986), p. 43.)

A c.m.s arises from an interaction of ‘organismic

states’ (e.g energy level, testosterone) and the presence

of incentive stimuli, see Figure 3. If there are no relevant

stimuli present, for example no food when the animal is

hungry, then a depletion of energy will not cause system-

atic goal-directed behaviour. Instead, an increase in gen-

eral activity may be observed. Also, Toates (1986) notes

that novel hedonically neutral stimuli may still arouse

some exploration.

In contrast to the homeostatic model, where the internal

state drives behaviour, the existence of an incentive stim-

ulus is key. In feeding c.m.s, energy depletion only serves

to accentuate the food representation. This explains why

tasty and palatable food is sufficient to motivate consuma-

tory behaviour without any kind of energy deprivation.

Thus we can conclude that a homeostatic model is too

simplistic for understanding how animals are motivated.

All the theories outlined here emphasise a complex inter-

play between the internal states of the animals with the

properties of objects in their external environment. In

Bindra’s model, an animal cannot just feel motivated to

eat because its energy level is depleted - it is only moti-

vated to act in the presence of hedonically potent stimuli.

These ideas counter the notion than an animal, once at a

certain ‘level’ of hunger, then sticks rigidly to an explicit

goal of ‘find food’ until its hunger is reduced.

Thus our system needs to include a motivation system

which is more flexible than is perhaps usual in existing

artificial creatures. The motivation system is a key aspect

in that it affects the decision of how the creature should

act at each turn in a game.

2.2.1 Toates System theory model of motivation

Figure 4: Toates’ system theory model. K1 represents the

energy ‘gain’ of the system, which determines the level

and type of motivation. (Adapted from Toates (1986),

p.49.)

Toates (1986) describes his own ‘systems theory’

model which draws together ideas on motivation similar

to Bindra’s work. Toates’ model is shown in Figure 4.

This type of model makes a good bridge from psycho-

logical models to computation ones. Toates’ model takes

account of the three important factors:

• the need for a sensory stimulus to arouse a motivated

response.

• the role of the energy level or internal states of the

animal in adjusting the ‘sensitivity’ of the system.
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• information from past experiences.

K1 represents the ‘gain’ or sensitivity of the nervous

system, and subsequent motivation. If the sensory stimu-

lus ‘revives’ negative memories of a past experience with

this object, it will reduce the value of K1. If K1 drops

to negative numbers this will result in an active avoidance

response at the motivation level.

The K1 parameter in Toates’ model provides a conve-

nient mechanism to encapsulate all the factors involved in

motivation in a single number, making the programming

of subsequent processes neater. However, it seems likely

that there is more to animal motivation systems than de-

scribed by Toates. Specifically, there is probably a role

for emotions, such as fear or pleasure, in motivation and

related decision making.

2.3 Emotions

In game AI where emotions have appeared at all, it is gen-

erally at a cosmetic level - giving the character the ap-

pearance of showing a certain emotion. Here we are con-

cerned not with the subjective feeling or visual appear-

ance of emotions, but rather the underlying mechanisms

which give rise to these states.

In this section we review three examples from neuro-

science and animal behaviour providing emotional mech-

anisms that could play a part in the motivation system of

our artificial creatures.

2.3.1 Neuroscience and Fear Conditioning

Joseph LeDoux (LeDoux, 1999) identifies two neural

routes - one cortical and one subcortical - involved in

emotional learning (such as that involved in fear condi-

tioning). The amygdala is a major part of the subcortical

route, and removing it prevents fear conditioning from oc-

curring at all. LeDoux suggests that the role of this sub-

cortical route is as a quick-and-dirty reaction mechanism;

emotional responses such as fear begin in the amygdala

before we even recognise completely what it is we are re-

acting to.

LeDoux maintains that “Emotion is not just uncon-

scious memory: it exerts a powerful influence on declara-

tive memory and other thought processes.” According to

Antonio Damasio, one such thought process is that of de-

cision making. He argues that the idea of a totally rational

decision maker is not appropriate when quick decisions

must be made, and affective memories are invaluable in

these cases (Damasio, 1994).

Damasio proposes a “somatic marker hypothesis”

which suggests that certain structures in the prefrontal

cortex create associations between somatic responses trig-

gered by the amygdala and complex stimuli processed in

the cortex. The idea is that both positive and negative as-

sociations can be created. Somatic markers help limit the

number of possibilities to sort through when making a de-

cision by directing the person away from those associated

with negative feelings.

These ideas suggest that not only do affective associ-

ations play a part in decision-making, but that there is a

physically different route in the brain which processes ba-

sic emotional information. In terms of the design of an ar-

tificial creature, it would seem sensible to have a similar

route, whereby fearful reactions can override more com-

plex processing and steer the animal away from danger.

How do these findings relate to the design of synthetic

characters? Firstly, as asserted by LeDoux, whilst con-

sciousness is needed for the subjective feeling of emotion,

the basic function of emotional processing and response

can be found even in a fruit fly. Thus it seems a possi-

ble and useful task to incorporate emotional learning into

an AI agent in some way. Since fear conditioning has

been extensively studied, it would seem to make a good

choice as a place to start. Damasio’s hypothesis of ‘so-

matic markers’ suggests ways that emotion is important in

decision making as well as aspects of learning. It would

be interesting to see if basing algorithms around his hy-

pothesis could make for a more ‘emotional agent’; one

that makes more than completely rational, logical deci-

sions as is generally the case in current game AI. Could

this make for a more believable character?

2.3.2 Learning

Toates (1986) notes that when it comes to motivation sys-

tems, animals respond to ‘primary incentives’ (such as

food) and ‘cues predictive of primary incentives’. In fear-

conditioning, animals learn to associate a particular stim-

ulus (e.g. the sound of a bell) with an aversive stimulus

such as shock. Once this has occurred, the initial stimulus

alone is enough to rouse the animal into a state of fear.

In this way, fear plays a role in animal learning. If a

stimulus puts the animal in a state of fear, then its aver-

sive reaction to a subsequent powerful or noisy stimulus

is enhanced Toates (1986).

Combined with Damasio’s theory, this means that any

stimuli occurring while the animal is in a state of fear

will be associated more strongly with a negative somatic

marker. To replicate this idea, the design of an AI archi-

tecture could include a process whereby being in a state of

fear affects the strength and type of associations formed

by the program.

An advantage of reacting fearfully to cues which pre-

dict pain is that the animal will take an appropriate avoid-

ance response before the pain actually occurs.

Gray (1987) explains that rats respond differently in

two conditions - receiving a shock, and being exposed to a

stimulus that they have learnt predicts a shock occurring.

In the first condition, there is a great increase in activ-

ity, frantic scampering, or attacking some feature of the

environment. In contrast, encountering a stimuli which

predicts shock results in the rat freezing. Gray suggests

this is an adaptive response that occurs when a rat spots
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a predator - it freezes in an attempt to avoid detection.

He also adds that the response is affected by distance - if

the stimulus (or predator) gets too close, the rat shows a

strong aversive reaction.

By incorporating fear appropriately into learning and

decision mechanisms, an approach to AI could be devel-

oped that responds pre-emptively rather than just reac-

tively to pain. Also, the priming effect of fear on forming

associations may result in a program which learns to avoid

painful situations more efficiently than one with no fear.

2.3.3 The Role of Pleasure

Emotions can also impact animal behaviour to support

positive behaviour. For example, there is the concept of a

‘positive feedback’ priming mechanism that helps to sus-

tain certain activities. Evidence for this was found by Mc-

Farland and McFarland (1968, in (Toates, 1986)). They

noticed that interrupting doves while they were drink-

ing caused them to ‘lose momentum’. This implies that

there was something about drinking itself that increased

the motivational state of the dove. Toates (1986, p. 116)

explains that an animal needs such a positive feedback ef-

fect, particularly in situations where simultaneous feeding

and drinking tendencies exist of almost identical strength.

If it decides to eat and only negative feedback exists, then

after the first couple of mouthfuls the feeding motivation

will drop, in turn making the drinking tendency stronger.

The animal would end up oscillating between food and

water, which is costly in terms of time and energy. It

would be more advantageous to stick with one activity

for a longer period of time before switching.

It would seem vital to have some kind of positive feed-

back mechanism to reduce the chance of the AI oscil-

lating, and hence to look more believable as well as be-

ing more efficient. While the animal motivation literature

does not discuss pleasure as such, this concept makes at

least a good metaphor for the ‘positive feedback’ concept.

It would make sense that the animal would feel something

good when it starts eating or drinking. Essentially, plea-

sure can be thought of as a reward from an internal, rather

than external, origin. Finally, in the same way that the fear

emotion might enhance learning about dangerous objects,

it would seem a good idea to have a similar ‘emotion’

which affects the learning about really positive objects or

encounters.

3 Artificial Intelligence

In order to make use of the ideas from the previous sec-

tion, we need to consider what sort of design and frame-

work would be conducive to the incorporation of emo-

tional processes. Despite the lack of sophisticated emo-

tional agents in modern computer games, emotions in

general are not a new topic for AI. For example, Si-

mon (1967) had already explored the need to account for

‘alarm mechanisms’ in artificial systems.

Since the 1980s, many different programs have been

specified and sometimes implemented. One of the most

notable examples in this area is the work of Sloman (Slo-

man, 1999)(Sloman, 2000) (Sloman, 2001). He argues for

more sophisticated theories of affect and emotion, and has

suggested an architecture-based approach to the design of

affective agents. This means starting with specifications

of architectures for complete agents, and then finding out

what sorts of states and processes are supported by those

architectures. Sloman himself specifies a multi-level ‘Co-

gAff Architecture Schema’ (Sloman, 2001) in which ‘af-

fective’ states and processes “can be defined in terms of

the various types of information processing and control

states supported by different variants of the architecture,

in which different subsets of the architecture are present.”

It interesting to note that Sloman has severe objections

to Damasio’s hypothesis and does not believe that “emo-

tions somehow contribute to intelligence: rather they are a

side-effect of mechanisms that are required for other rea-

sons.” Despite the debate over emotions and intelligence,

Sloman’s work is still consistent with that of LeDoux and

neuroscience in general. For example, the ‘reactive layer’

in his architecture which monitors automatic responses is

similar to the direct activation of the amygdala from the

sensory thalamus e.g in fear conditioning. His ‘delibera-

tive’, reasoning layer is equivalent to the slower reasoning

performed in the cortex. The ‘meta management’ layer,

for monitoring internal states and processes is a little more

tricky to pinpoint, however LeDoux (1999) identifies neu-

ral systems which may support the awareness of the activ-

ity of bodily responses.

Work done by Moffat (2001) ‘on the positive value of

affect’ also draws on psychology to improve AI perfor-

mance, and provides more inspiration for the relevance of

emotion. Moffat feels that cognitive psychologists tend to

focus on the function of negative emotions (such as fear),

but positive emotions are also important, particularly in

learning. On the other hand, machine ‘learning classi-

fier systems’ (LCSs) model reward and not punishment.

‘EMMA’, the model resulting from attempts to combine

positive and negative affect, was found to learn certain be-

haviours better than the LCSs. More importantly, Moffat

found that the ‘emotions’ provided a way of signifying

importance to EMMA:

“LCSs do not distinguish between stimuli of varying

priorities.... EMMA devotes her attention and all her re-

sources to the most important aspect of her current sit-

uation. In this respect, emotion is a kind of biological

optimiser that could be put to good use in artificial agents

too; especially learning ones” (Moffat, 2001), p.61.

Moffat’s work suggests the importance of incorporat-

ing negative and positive affect. Our work adopts an

archictecture-based model as advocated by Sloman. This

means rather than trying to code specific behaviours and

abilities as they are needed, the starting point is to spec-

ify an architecture for a complete agent, and investigate

which processes are supported by that architecture.
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4 Agent and Game Design

In this section we outline the “sim agent” toolkit used to

implement our prototype agent system, and the design of

a simple game framework to explore agent behaviour.

4.1 Programming Environment

The “sim agent” toolkit developed by the ‘Cognition and

Affect project’ at University of Birmingham, is designed

with the specific intention of enabling the building of

agent architectures1. It runs using the Pop-11 language

within the POPLOG environment, on both Linux and

Windows systems. Sim agent was chosen for our work

since it allows a wide range of programming techniques,

and for the possibility of hybrid systems, for example in-

corporating neural networks.

Figure 5: For each ‘time-slice’, the sim agent Scheduler

runs through processes for each agent. After this is com-

plete, the Scheduler executes any actions, such as moving

the agents to a new location, and updates the graphics ac-

cordingly.

Figure 5 shows the operation of the sim agent toolkit.

Time is simulated in discrete ‘time-slices’, which effec-

tively act as a counter. This means that time is not truly

continuous, and that the agents all act in a synchronous

way. During each time slice, the agent does the follow-

ing:

• New sensory data is added to the agent’s personal

database.

• Next, its rulesystem runs, acting on the information

available in the agent’s database. Unless the agent

is going to do nothing during this time-slice, the

rulesystem will output one or more ‘do X’ items into

the agent’s database.

1Details available from: http://www.cs.bham.ac.uk/

˜axs/cog\_affect/sim\_agent.html

• The scheduler moves on to any other agents or ob-

jects that exist in the environment, and repeats the

procedure. When this is finished, it goes back and

‘picks up’ all the ‘do’ actions, and executes them.

4.2 Game Design

A simple game was designed to explore our approach

to programming artificial creatures for computer games.

This incorporates a set of ‘Rat’ agents, two sets of ‘Rat’

agents were designed, one with ‘emotional mechanisms’

involving fear and pleasure, and the other without. The

aim then is to ask participants to play two different ver-

sions of the game, taking objective measures of the Rat’s

performance and a subjective measure of which version

the participant thought was more believable.

Figure 6: Concept diagram showing typical graphics for

the game.

Rats will be implemented in sim agent, and consist of

a ‘hunger level’, ‘thirst level’, ‘speed’, and a ‘heading’

(direction). The Rat also has a value expressing its current

emotional state (fear, pleasure or neutral), and a flag for

being in pain or not. ‘Food’, ‘water’ and ‘person’ are all

created as objects, of which the game player can move

only the food and person.

The idea of the game from the player’s point of view

is to score points by shocking Rat agents. It uses a turn-

based system, whereby the Rats all make an action choice

and move, then the player takes a turn.

The aim of the Rats is to basically stay alive, by keep-

ing their hunger and thirst levels relatively low. They have

a simple learning system whereby they can form associa-

tions between objects which occur together in space, and

events that occur together in time. They start off know-

ing nothing about the player. In other words they have

no ‘instinctive fear’. Also, the Rats do not immediately

understand that a received shock is related to the person -

this is something they should learn to associate over time.

Shocking a Rat puts it into a state of pain. In Rat agents

with emotions, it also puts them into a state of fear. Both
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these affect the processing of the Rat during its subse-

quent turn.

Each turn, the player can move the person within a cer-

tain distance, then has the option to shock up to one Rat,

if that Rat is ‘in range’ of the shocking device which the

person carries. The Rat cannot discern the direction that

the shock came from; instead it decides which object is

the most likely ‘cause’ of the pain, based upon the asso-

ciations stored in its memory. Note that the range of the

shocking device is greater than the visual range of the Rat.

This means it is possible to shock the Rat without it seeing

the person at all. If the Rat cannot decide where the shock

came from it will react differently; perhaps running in a

random direction as opposed to freezing or actively avoid-

ing the object it links with causing pain. We hope that this

feature will make the Rat appear more believable.

The player also has the option of moving one piece of

food around, within a certain distance. This ensures not

only a more dynamic environment, but opens up a few

more strategies to the player, such as piling all the food

together in one place and standing the person next to it.

Rats that feel fear should learn more quickly that the

person is associated with pain. This is because being in a

state of fear enhances the memory updating and associa-

tions involved with pain and objects that might be causing

it. Secondly, it is possible for Rats to feel fear at certain

objects before they are actually in pain. This should help

them pre-empt the shock and hopefully avoid the feared

object before it causes pain.

The role of the pleasure emotion is slightly more sub-

tle. It occurs when the Rat starts eating or drinking; to

a greater extent the more hungry or thirsty it is. It pro-

vides a positive feedback mechanism, which will encour-

age the Rat to continue consuming until its hunger/thirst

level drops quite low. This aim here is to prevent the Rat

from ‘oscillating’ between food and water objects if its

hunger and thirst levels are at similar values.

Both emotions are continuous, occurring at certain lev-

els rather than being simply on or off. This allows

for some more complex possibilities, such as a situation

where the Rat feels a little bit fearful but very hungry; so

it approaches the food despite being slightly afraid of it.

While we have a complete design of the architecture for

the game, its implementation is incomplete. The system

currently does not incorporate interaction with a user, and

the memory and emotion systems are not yet functional.

5 Architecture Overview

5.1 Basic Framework

Figure 7 shows the architecture of the Rat agent. The cur-

rently implemented basic design is shaded grey. This in-

cludes the core decision-making aspect, and the motiva-

tion systems. Running from top to the bottom is roughly

equivalent to the order of the sim agent rulesystem run by

each agent during the cycle.

Perceptual system This identifies what the object is,

along with other properties such as how far away it is,

how much there is, and in the case of food/drink a ‘he-

donic’ value representing how ‘tasty’ or desirable it is.

Any information about objects recognised as food will be

passed on to the feeding motivation system, and the de-

tails of drink objects filtered to the drinking motivation

system. At this stage any other objects, such as Rats or

perhaps the human player are not processed further.

Motivation systems Here a value for each object is cal-

culated. The value represents an overall ‘weight’ of im-

portance. It takes account of the properties of the individ-

ual item, and how far away it is, along with specific infor-

mation on the internal condition of the Rat. The Feeding

motivation system uses the Rat’s hunger value, while the

drinking systems uses the thirst value. (Hunger does not

affect the drinking motivation system.) An equation for

this is as follows:

Weight =
a × Hunger + b × Amount

c × Distance
+ d × Hedonic Value

A weight value is computed for each object, along with an

appropriate action. If the weight value is positive, then the

action will be to approach the object; if it is negative then

the suggestion will be to move away from it (particularly

unpleasant food i.e. with a large negative hedonic value,

might be aversive). If the Rat is currently consuming the

object, the weight will represent how important it is to

carry on doing so.

Finally, if there are no food objects going into the

feeding system, it will output an ‘explore’ action, with

a weight evaluated using the Rat’s current hunger level as

the main variable.

Decision The decision mechanism simply chooses

whichever action has the highest ‘weight’ associated with

it. However, it could be more complex than this - taking

account of what other objects lie in the same direction. So

a good decision might be to go towards a mediocre item of

food if there also happens to be some water nearby. Con-

versely, if a great item of food is very close to a dangerous

object it might be better to avoid that direction.

Motor system The processes here figure out how far

the Rat can move in the chosen direction, and evaluates

the new co-ordinates to be put out as a movement action.

5.2 Full Version

The Full Architecture design shown in Figure 7 includes

two important additions to the basic version: memory and

emotion systems.

Memory This stores locations of objects which the Rat

encounters, and includes a simple learning mechanism
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Figure 7: Rat Agent architecture design. The implemented base design is shaded grey.

which can develop conditional associations between ob-

jects and events which occur together in space or time, in

additional to unconditional ones arising from the uncon-

ditional stimulus of the object. It provides extra detail to

the motivation systems, so their evaluation equation can

also take account of any past experience with the object.

The object memory does not remember food items as

‘specific’ e.g ‘food item one’, but instead stores food by

location e.g ‘food at (x,y)’.

Emotion This does several things, but all the actions

essentially involve fear and pleasure. Firstly, it cross ref-

erences incoming visual information with details in the

memory to see if any objects should elicit a state of fear,

and if so then what level of fear. The level relates directly

to the strength of the association between that object and

being in pain.

In terms of pleasure, at the moment it only produces

this state if the Rat is actually consuming, however this

could be extended to an anticipative pleasure. The level

of pleasure is determined by how hungry the Rat is. So

if it is really hungry before it starts eating, the level of

pleasure will be high. In a sense ‘pleasure’ here can also

be thought of as ‘relief’.

The emotion system can adjust the weight values pro-

duced by the motivation systems to enhance or reduce

particular signals. As an example, if one of the food ob-

jects is associated with something nasty the feeding mo-

tivation system may output a negative ‘avoid’ signal for

that object. If it is particularly nasty - enough to cause

some degree of fear - the emotion system will enhance

the signal, making it particularly aversive, while decreas-

ing the strength of all the other signals.

It is important to note that in this situation the emo-

tion system does not necessarily get the last word - if the

rat is especially thirsty, one of the ‘approach water ob-

ject’ signals might still be greater than the avoidance one.

However, if recognising an object pushes fear above a cer-

tain threshold, an override happens; the rat will run from

that object despite how hungry or thirsty it might be. This

route is approximately similar to the ‘quick and dirty’ fear

reaction mechanism discussed by neuroscientists.

If the Rat is feeling pleasure at consuming an object,

the emotion system will also adjust the weights, increas-

ing the consume signal while decreasing the others. The

amount that the signals are altered will relate directly to

the level of emotion - a higher level resulting in a greater

signal adjustment.

Feeling either emotion to any level will also feed back

into the memory system, enhancing specific associations

formed or reinforced during that cycle. In particular

if the Rat was in a state of fear because it could see

the player, and then subsequently experienced a painful

shock, the association between the player and pain would

be strengthened to a greater level than if the Rat was in a

neutral emotional condition.

5.3 System Implementation Details

While it is often comparatively easy to specify the de-

sired features and behaviour of a system, actually encod-

ing these into a working agent is often much more diffi-

17



cult. In this section we discuss our current implementa-

tion of the systems within the Rat and how these might be

extended.

5.3.1 Hunger/Thirst Systems

After some consideration the following relationship was

used to calculate the hunger and thirst values in each cy-

cle.

Y =
2x − 1

(2x − 1)2 + 1
+ 0.5

where Y is the new Hunger or Thirst value and x repre-

sents a counter which increments each cycle. It is a fairly

arbitary choice, and could be replaced with an equation

(or indeed series of equations) which more accurately re-

flect how hunger changes in a real animal.

This function was chosen since it increases slowly, in-

dicating that the Rat’s hunger/thirst level rises slowly at

first, but then increases rapidly to a point where it is ‘very

hungry’, with the limiting value Y = 1.0 leading to death

of the Rat from starvation. This function is not taken from

any particular animal psychology literature, but is based

on intuition of the relationship between hunger/thirst and

time. During each run of the Rat agent the hunger and

thirst levels are updated.

It would be good if food of a higher ‘quality’ actually

reduced their hunger by more - in other words there would

be some real benefit in going for these type of objects.

This is one of the many ideas which could relatively easily

be added into the program in the future.

5.3.2 Motivation Systems

The feeding and drinking systems are identical, and we

describe only the feeding system here.

The purpose of the motivation system is to process the

relevant visual information and output a database entry

for each object determining the most appropriate action.

‘Food Weight’ FW is calculated using the following

equation,

Food Weight ∝
H2

D
+ FQ

where H is the hunger, D is the distance to the food, and

FQ the food quality. The hunger value is squared so that

the resulting weight is exponentially greater at high lev-

els of hunger. FW is proportional to 1/D, resulting in

lower weights with greater distances between the Rat the

the food. Food quality is added to the end to provide a

final adjustment. If it is negative, it may push the result-

ing weight to negative values and a subsequent ‘avoid’

action. The constants in the equation were derived from

trial-and-error testing until the Rats behaved in a reason-

ably balanced way.

At the end of the day, the motivation equation is key

to the decisions made by the Rat, and behaviour may be

further improved by use of alternative functions. Another

option would be to use a genetic algorithm approach to

try to ‘evolve’ an optimal equation that produces the most

‘fit’ Rats. Fitness could be simply a survival rate, or relate

to how well the Rat maintains a balanced level of hunger

and thirst.

5.3.3 Explore System

If there is no visual data on food objects available, the

system outputs an explore action.

The ‘Explore Weight’ EW is calculated using the fol-

lowing method,

EW ∝ need2

where need is the current hunger level of the Rat.

Again, this is another equation that could benefit from

being ‘evolved’ by genetic algorithms. At the moment it

is roughly balanced so as to become more urgent to find

food the hungrier the Rat becomes, but at lower levels

of hunger it’s still better to carry on drinking if drink is

available.

Again the exploratory mechanism is not based on psy-

chological literature, but in its current intuitive form

merely ensures that the Rat moves to locate sources of

food and drink. There is considerable existing work on

animal foraging patterns that could be applied here.

The following exploration method was developed using

trial and error experimentation. The explore action has the

potential to span up to 6 turns, during which the Rat does

the following:
Turn Action Count

1 Choose random direction X, move that way. 1

2 Continue to move in X direction 2

3 Continue to move in X direction 3

4 Reverse direction X, move that way 4

5 Continue to move in (reversed) X direction 5

6 Continue to move in (reversed) X direction 6

7 Back in starting position, choose direction Y 1

This means that the Rat spends 3 turns moving in one

direction, at which point it turns round and goes back to

the starting position. If in any of these turns it encoun-

ters food/drink then it reacts to those objects: in other

words it is not ‘committed’ to completing the exploration

sequence.

When it comes to step 6, a new angle for exploration

is chosen. Essentially the new angle cannot be anywhere

within the range of the old one, plus or minus 45 degrees.

This makes sure that after an unsuccessful exploration in

one direction, the Rat chooses a significantly different di-

rection to explore in next.

6 Results

Figure 8 shows a series of images showing the progress

of Rat agents. The frame number refers to the time-slice

at which the snapshot was taken. The rats are the square

18



Figure 8: Images showing an example of Rat agent progress.

boxes in the centre of frame (1). They all start off with

hunger and thirst at the same low level in all of the results

discussed. This is probably why r2 and r3 head towards

the same water object (the square boxes) at the beginning.

At cycle 3 R1 can be seen to be fairly close to both a

food item (the circles) and a water item. The water item

it heads towards has the highest ‘quality’ value of the ob-

jects in the environment, so this move makes sense. After

drinking for a bit, the food motivation system pushes him

to explore (about cycle 12/13). He finds food and con-

sumes this for about 5 cycles then makes his way to the

nearby water object. At this point though he hits a bug

whereby no matter how much he drinks the thirst does

not go down. By cycle 52 he is dead from hunger.

Rats R2 and R3 essentially oscillate between the food

and water objects on the far right.

While the motivation equations could do with some ad-

justing, it is still good to see that the agents make some

attempt to keep their hunger and thirst levels low. Also it

is good to see the inefficient oscillating behaviour occur-

ring as predicted. Including the ‘pleasure emotion’ may

really help to reduce this.

7 Discussion

Although the implementation of the Rat agent architec-

ture is not complete, some conclusions can be drawn at

this stage. The work completed so far is very promising,

and we are confident that developing it further would re-

sult in some very interesting results.

Firstly, there is a wealth of psychology literature which

makes for good source material and inspiration. The work

described here focuses on motivation and emotion sys-

tems. However, there is much more information and the-

ory available than has been incorporated in this design.
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Many of the ideas described in this literature are not ones

that are typically explored when considering problems

purely from an AI point of view.

The biggest advantage of considering animal motiva-

tion studies is that the researchers spent a lot of time ob-

serving and testing the animals, and really getting to grips

with the basic systems that drive and affect behaviour. Re-

gardless of whether their findings accurately explain how

the animal mind really works, their descriptions still relate

strongly to real observable actions. The resulting models

and diagrams make it fairly simple to port the ideas over

to a computing environment.

It is encouraging to see that even the basic version re-

sulted in agents that made appropriate decisions to reduce

their hunger and thirst levels. Their behaviour was al-

ways slightly unpredictable (and hence, perhaps more be-

lievable?) since they never followed a ‘set path’ or ‘set

procedure’. It was not a case of ‘when hunger is X, find

food’.

The architecture-based approach lends itself well to the

approach taken in this work. Once the basic architec-

ture design was in place, other aspects could integrated

in quite a natural way. For example, once the base moti-

vation system was in place, it was fairly straightforward

to see how the fear emotion could be incorporated and

affect the decision making.

In the games industry, it is becoming more common to

use pre-designed ‘engines’ to cover whole aspects of the

coding. These engines tend to be specialised, for example

it is possible to get physics engines that deal specifically

with car crashes. Considering how complex just design-

ing the motivation, or learning, or perceptual system can

be it would seem a good idea to put them together as an

AI creature ‘engine’. This could be the basic all-purpose

agent which could then be tweaked and adapted by the

specific game designers to suit their needs. Using a sys-

tem like sim agent would be perfect for this, since it is

easy to adjust old rulesets, add in new ones, or simply

change the base variables for the agent instance. The ar-

chitecture and design ideas presented here could form a

component of such an engine.

To really achieve this effectively, it may be necessary

to bring together a hybrid of AI techniques. In this in-

vestigation we saw how difficult it is to know what func-

tions to use to provide the most efficient and realistic be-

haviour. This is exactly the type of problem that genetic

algorithms could help with. Neural networks, or at least

a connectionist approach, seem like the best strategy for

implementing learning systems. However, without being

implemented in a way that makes them useable inside the

symbolic environment of game code they are not too prac-

tical. Both these areas would provide good grounds for

further study.

Overall, we are encouraged by our results. They

demonstrate that psychology literature is a very fruitful

resource. If a complete AI engine which has been inspired

by psychology in is developed, we feel that it would in-

deed create more believable agents and much more im-

mersive game play.
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