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Abstract

Many formal models of categorization adhere to two basic
principles. First, the extent to which a stimulus is subjec-
tively characteristic of a particular category can be repre-
sented by a single number. Second, the probability with
which people choose a particular category label for a stimu-
lus can be derived from these numbers via the Ratio Rule
a.k.a. the Luce choice axiom (Luce, 1959). A categoriza-
tion experiment employing artificial visual stimuli is pre-
sented and is shown to be problematic for these two princi-
ples. We demonstrate that, for the data presented here, the
first principle can be retained if one replaces the Ratio Rule
with a simple connectionist model.

Introduction
Category learning is the task of acquiring the correct cate-
gory label for each of a set of presented stimuli. The ability
to categorize is central to cognition, and it has been the sub-
ject of a large number of studies. Over the last thirty years,
these studies have typically involved abstract stimuli
grouped into categories not necessarily definable in terms of
a simple rule (e.g. Homa, Sterling, & Trepel, 1981; Medin
& Schaffer, 1978; Posner & Keele, 1968). Psychologists
have proposed a variety of formal models of our ability to
learn and make decisions about such categories. The models
differ in many respects - for example, the Generalized Con-
text Model (Nosofsky, 1986) proposes the memorization of
presented examples, whilst a number of other theories pro-
pose the formation of feature-category associations  (e.g.
Gluck & Bower, 1988; Kruschke, 1996; McClelland &
Rumelhart, 1985). Despite such diversity, a great many
theorists seem to agree on two fundamental principles. First,
the extent to which a stimulus is subjectively characteristic
of a particular category can be represented by a single num-
ber. We will refer to such numbers as category magnitude
terms. Second, the probability with which a participant de-
cides that a stimulus belongs to a particular category is de-
termined by the Ratio Rule, a.k.a. Luce’s Choice Axiom
(Luce, 1959). In the current context, the Ratio Rule can be
stated
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where P(i) is the probability of choosing category i from n
alternative categories and vj is the category magnitude term
for the jth alternative.

Theorists seldom justify their adoption these principles.
Of greater concern is the fact that,  as far as we are aware,
there have been no direct tests of the Ratio Rule in the con-
text of categorization. The evidence for the Ratio Rule, such
as it is,  comes from pair-comparison experiments and iden-
tification experiments (Bradley, 1954; Clarke, 1957;
Hopkins, 1954). The evidence provided by such studies is
equivocal at best, and some studies provide direct evidence
against the Ratio Rule (e.g. Burke and Zinnes, 1965; Lam-
ing, 1977).

Previously, we had made an unsuccessful attempt to dis-
prove the Ratio Rule in the context of two-choice categori-
zation decisions (Jones, Wills, & McLaren, 1998). The rea-
son for this might have been that the Ratio Rule was basi-
cally correct for categorization decisions, but we suspected
that it was because the predictions made by the Ratio Rule
in a two-choice situation tend to be numerically close to the
predictions of a number alternative accounts. Therefore in
the experiment described here we tested a property more
characteristic of the Ratio Rule - its predictions about prob-
ability ratios.

A long appreciated feature of the Ratio Rule is that it pre-
dicts that the ratio in which two alternatives are chosen is
unaffected by the addition of a third alternative. For example,
in a taste preference test between Coke and Pepsi, partici-
pants might choose Coke with a probability of 0.8. The
Ratio Rule predicts that whilst the addition of lemonade
might change the probability with which either Coke or
Pepsi is chosen, it does not change the 4:1 ratio of prob-
abilities.

The ratio we concentrate on in the current study is directly
related to this property. It is the ratio between 1) the prob-
ability with which a particular response is made to a stimu-
lus when three category labels are available and 2) the prob-
ability with which the same response is made to an equiva-
lent stimulus when only two of the labels are available. For
example, let’s call the three labels A, B, and C, and say that
A is the option which is disallowed in the two-choice exam-
ple. Under the assumption that category magnitude terms for
allowed alternatives are not affected by the number of alter-
natives available, it can be shown that the Ratio Rule pre-
dicts
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This is not much use as it stands because we do not have
any direct way of measuring the category magnitude terms,
and different theories of categorization do not generally agree
on how one might estimate the terms from observable data.
The utility of Measure 1 lies in the fact that the Ratio
Rule’s predictions for the probability with which category A
is chosen (when it is allowed) are similar in form. Specifi-
cally
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This correspondence means that, in situations where va is
constant, any given change in (vB + vC) will produce the
same direction of change in these two measures. One no
longer needs to know what values the magnitude terms take.
Instead one just needs to set up a situation where it is rea-
sonable to assume vA is constant across a set of stimuli.
Then, to the extent different stimuli result in different values
of P(A:A,B,C) and the 2 choice to 3 choice ratio (Measure
1),   these     differences      must     be     in     the     same     direction     for     both
   measures     if     the      Ratio      Rule     is     correct.

A number of similar correspondences can be set up, but
we employ just one further here. Consider a second set of
stimuli which are comparable to the first, except in their
relative similarity to one of the three categories. In this
situation it may be reasonable to assume that the magnitude
terms for these two sets of stimuli differ only in respect to
that category. Taking the category on which they differ as A,
and the two magnitude terms as vA and vA’ , the ratio of
probabilities with which category B (or C) is chosen in re-
sponse to these otherwise comparable stimuli is
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Note that in a situation where the two magnitude terms for
category A can be assumed to be constant, and vA > vA’ this
third measure must exhibit the same direction of change as
the other two. We investigated whether all three measures do
indeed show the same direction of change in the context of a
simple categorization task.

Experiment
The experiment had two phases. In the training phase, all
participants learned about the category membership of a set
of novel, artificial stimuli. Each training stimulus belonged
to one of three categories - A, B or C. In the transfer phase
which followed participants were asked to determine the
category membership of a set of test stimuli. Some partici-
pants were allowed to respond A, B or C, whilst for others
the option A was disallowed. The stimuli presented in the
transfer phase were designed to vary smoothly from being
characteristic of category B and uncharacteristic of category
C through to being characteristic of C and uncharacteristic of
B. They were designed in this way so that (hopefully) the

three measures we were interested in comparing would be
relatively smooth functions of the number of category B (or
category C) elements. If reliable functions were found for
our measures and these functions all exhibited the same di-
rection of change then we would have evidence in support of
the Ratio Rule. If the functions found exhibited different
directions of change then this would be strong evidence
against the Ratio Rule.

Participants with three response alternatives were pre-
sented with one of two sets of test stimuli. The members
within a set were designed to be equally characteristic of
category A. For one set they were somewhat characteristic of
category A, whilst for the other they were uncharacteristic.
All participants with two response alternatives received the
test stimuli somewhat characteristic of A.

Method
Participants and Apparatus. 36 Cambridge University
students participated. They were tested individually in a quiet
cubicle on a Acorn Risc PC microcomputer with a 14” color
monitor . The computer’s screen was at eye level, approxi-
mately 90 cm directly in front of where the participant sat.
Responses were recorded via the “X”, “B” and “M” keys of a
standard PC keyboard. For this experiment the keys were re-
labeled “A”,  “B” and “C” using bold red letters against a
white background.

Figure 1: An example stimulus.

Stimuli .  Each stimulus was a collection of twelve differ-
ent small pictures (hereafter elements), arranged on an in-
visible four-by-three grid inside a 4.5 cm by 3.5 cm rectan-
gle outline (see Figure 1 for an example). Every stimulus
contained twelve elements drawn from a pool of 40 that we
have used in a number of previous experiments (see Jones et
al., 1998). No stimulus contained more than one copy of
any particular element. At the beginning of the experiment,
and separately for each subject, 12 elements from the pool
were randomly designated as category A elements, a different
12 as category B elements, and a different 12 again as cate-
gory C elements. The remaining four elements were desig-
nated as novel elements and were not employed in the train-
ing phase. Each training stimulus for each category was
constructed by starting with all 12 elements characteristic of
that category (e.g. category A elements for a category A
training stimulus). Each element in the training stimulus
then underwent a 10% chance of being replaced by a ran-
domly chosen element from one of the other two sets (e.g.
replaced by a B or C element in the case of a category A
training stimulus). It was these modified stimuli that were



presented to subjects as training stimuli. This procedure
produces training examples which are composed predomi-
nately of elements characteristic of a particular category but
also exhibit considerable variability in terms of the specific
elements they contain. Ninety training examples were cre-
ated for each subject, thirty from each of the three categories.

Participants received one of two sets of test stimuli - a
familiar-elements set or a novel-elements set. Each stimulus
in a familiar-elements set contained four A elements, x B
elements and (8-x) C elements where x could be 0, 1, 2, 3,
4, 5, 6, 7 or 8. Ten examples of each of these nine types of
test stimulus were created for each participant receiving a
familiar-elements test set. The specific elements used to
create each test stimulus were chosen randomly within the
constraints provided by the number of A, B and C elements
the stimulus was to contain. Ten examples of each of four
dummy stimuli were also created, these stimuli being (8 A,
0 B, 4 C), (8 A, 4 B, 0 C), (0 A, 4 B, 8 C) and (0 A, 8 B, 4
C). The purpose of the dummy stimuli was to obscure from
the participants that all test stimuli of interest (from the
perspective of the experimenter) were constant in terms of
the number of elements from category A they contained.
Stimuli in the novel-element test sets were constructed in
the same manner as familiar-element stimuli, except that the
four novel elements (see above) were used instead of four
randomly selected A elements.

The position of elements within a stimulus was randomly
determined for each stimulus presented, with the constraint
that exactly one element occurred at each location in the
four-by-three grid. Where stimuli were accompanied by a
category label, this was presented as a large sans-serif capital
A, B or C in an outline rectangle (4.5 by 3.5 cm) immedi-
ately to the right of the stimulus itself.

Procedure. Participants were allocated to one of three
groups such that an equal number (12) participated in each.
The three groups, referred to hereafter as the two-choice,
three-choice and novel-elements groups, differed in the num-
ber of response alternatives available in the test phase and
the stimuli presented during the test phase.

The training phase was the same for all participants. After
some general instructions the ninety training stimuli were
presented sequentially and in a random order. Each training
stimulus was presented for five seconds in the center of the
monitor, accompanied by the appropriate category label.
Two seconds of plain mid-gray mask in the stimulus and
label rectangles preceded the next example. Participants were
not required to respond during the training phase. They were
simply asked to concentrate on the examples shown as they
would later be asked to classify new, unlabelled examples.
This training procedure had proved effective in a number of
previous experiments (Jones et al., 1998; Wills & McLaren,
1997).

The training phase was followed by a test phase. There
were 130 stimuli in the test phase (90 target stimuli and 40
dummy stimuli) which, again, were presented sequentially
and in a random order. Test stimuli were not accompanied by
a category label. Participants in the two-choice and three-
choice conditions received a familiar-elements test set whilst
participants in the novel-elements condition received a

novel-elements test set (see Stimuli). On the presentation of
each test stimulus, participants were asked a question. Par-
ticipants in the two-choice condition were asked “Is this a B
or a C?”. Participants in the three-choice and novel-elements
conditions were asked “Is this an A, a B or a C?”. In all con-
ditions they responded by pressing the appropriate key on
the computer keyboard. They then pressed the “Y” key,
whereupon the next stimulus was immediately presented.
There was no time limit for these decisions, and participants
were put under no pressure to respond quickly.

The allocation of the category labels “A”, “B”, and “C” to
the logical categories A, B and C was counter-balanced.

Results
Figure 2a shows the probability with which participants

responded with the category A label  to test stimuli
(Measure 2) as a function of the number of category B ele-
ments they contained (the conclusions of this study are unaf-
fected if one plots against category C elements instead). The
functions for the three-choice and novel elements conditions
both appeared to show an inverted-U trend. The significant
fit of a second-order polynomial to the nine mean data points
confirmed this appearance for the three-choice condition,
F(2, 6) = 5.6, p < 0.05, but not for the novel-elements con-
dition, F(2, 6) = 3.2, p > 0.1. The quadratic co-efficient for
the three-choice condition was significantly different from
zero, b2 = -0.006, t(7) = 2.4, p < 0.05.

The data points in Figure 2b are the average of the prob-
ability with which participants responded with their category
B label to stimuli with x category B elements and the prob-
ability with which they responded with their category C
label to test stimuli with x category C elements. In other
words, it shows response probability as a function of the
number of category-appropriate elements. Averaging these
two probabilities is appropriate because, across subjects,
there is no factor that determines which of the two categories
providing variable numbers of elements to test stimuli
should be described as category B and which as category C.
A replication of this experiment with non-counterbalanced
category labels failed to reveal any significant response bias.
Number of category-appropriate elements in Figure 2 reduces
from left to right in order to follow the convention that gen-
eralization functions (such as those shown in Figure 2b) are
plotted as slopes with negative gradients.
For our current purposes it is not the data presented in Fig-
ure 2b which are of central interest, but the ratios calculated
from the mean points it displays (Measures 1 and 3). These
ratios are presented as a function of category-appropriate
elements in Figure 2c. Inspection of this figure shows that
the 2 choice to 3 choice ratios (Measure 1) appear to exhibit
an increasing, accelerating trend whilst the 3 choice novel-
elements to 3 choice ratios (Measure 3) exhibit a decreasing,
accelerating trend. The significant fit of a second-order poly-
nomial to the nine points of Measure 1, F(2, 6) = 803, p <
.0005, with a best-fit line for which all three co-efficients
were significantly different form zero, b2 = 0.049, t(7) =
14,p < .005;  b = -0.674, t(7) =  24, p < .0005; a = 3.48,
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Figure 2: a) Probability of producing a category A response.
b) Mean response probability (see text). c) Two ratios cal-
culated from the data in Figure 2b. Plot symbols = empirical
data. Lines = predictions of the winner-take-all model pre-
sented in the Modeling section.

t(7) =  2.5, p < .05, supports this conclusion. The nine
points of Measure 3 were also a significant fit to a second-
order polynomial, F(2, 6) = 17, p < .005, and all three co-
efficients differed significantly from zero, b2 = - 0.021, t(7) =
3.0, p < .05; b = 0.244, t(7) = 4.3, p < .005; a = 0.632, t(7)
= 3.8, p < 0.01.

 Discussion
Our results pose two central problems for the Ratio Rule as
it is currently employed in many formal models of categori-
zation.

First, the Ratio Rule predicts that the two ratios repre-
sented in Measures 1 and 3 should show the same direction
of change over any interval of category-appropriate elements.
However, the best-fitting quadratics for the corresponding
functions show opposite directions of change (Figure 2c).
Second, the Ratio Rule predicts that the probability of
choosing category A in the three-choice condition (Measure
2) should show the same direction of change over any inter-
val of category-appropriate elements as the other two meas-
ures. However, the best-fitting quadratics for measures 1 and
2 are of opposite shape (compare Figure 2a with Figure 2c).
One might argue that these findings are of relatively little
consequence because the discrepancies are in derived meas-
ures with no straightforward psychological interpretation,
rather than in the response probabilities themselves. Such a
position is disingenuous. The predictions under test arise
naturally and unavoidably from a central (some would say
defining) feature of the Ratio Rule - the fact that the ratio in
which two alternatives are chosen is unaffected by the addi-
tion of a third alternative. These data provide evidence
against that central tenet and hence bring the formulation
into question.
If any one step in a chain of inferences is incorrect then the
conclusions drawn from that process must be brought into
question. Consequently, theoretical conclusions about the
nature of categorization must be re-examined if our conclu-
sion is found to be generally valid. Conversely, if the as-
sumptions we have made in coming to our conclusions can
be shown to be invalid then the Ratio Rule is not necessar-
ily incorrect. Below we briefly consider some possible criti-
cisms of our conclusion.

First, one could argue that we have disproved the Ratio
Rule for means across participants, but this does not dis-
prove the formulation for individual participants. This is a
valid point, but as most formal theories of categorization
have been applied to group means our conclusion still stands
for these theories. Second, it is true that our stimuli are
rather more complex than those typically used in category
learning experiments. It may be the case that our results do
not generalize to simpler stimuli, or that our stimuli are
unusual in some other way. This seems to be an empirical
matter, and one which is worthy of investigation. A third,
substantial criticism is that we have assumed that category
magnitude terms are, for our stimuli, univariate functions of
the number of category-appropriate elements the stimulus
contains (i.e. the magnitude term is determinable solely
from this property). There are at least two distinct ways in
which this assumption could be incorrect.



First, for specific models of categorization it may be pos-
sible to show that the category magnitude term for category
A is not invariant under changes in the magnitude terms for
categories B and C. For example, one might be able to dem-
onstrate for the GCM model (Nosofsky, 1986) that the test
stimuli were not at a fixed distance (in psychological simi-
larity space) from category A examples. The difficulty here
is that the procedure which Nosofsky uses to derive the psy-
chological similarity space assumes that the Ratio Rule is
correct. Some way around this circularity would have to be
devised.

Second, one could quite reasonably argue that category
magnitude terms are importantly affected by what response
alternatives are available (as a number of theorists outside of
the categorization literature have argued e.g. Restle, 1961;
Tversky, 1972). If this were the case in our experiment then
the derivation of Measure 1 would be invalid because it is
directly based on this assumption.

Therefore one response to our results might be to retain
the Ratio Rule but introduce a mechanism by which cate-
gory magnitude terms can be affected by the alternatives
available for decision. However, for most formal models of
categorization this would require considerable revision of the
basic principles upon which they were based. We wondered
whether there was a direct replacement for the Ratio Rule
that could accommodate our results without having to mod-
ify the rest of the theory.

Fixed Excitatory Link
Fixed Inhibitory Link

Figure 3: The winner-take-all model.

Modeling
Previously we have proposed that response probabilities in
categorization might be modeled by a simple winner-take-all
connectionist system employing category magnitude terms
as input activations (Wills & McLaren, 1997). Such a sys-
tem is illustrated in Figure 3. In addition to the magnitude-
term inputs, each unit has a fixed excitatory connection to
itself and fixed inhibitory connections to the other units.
These connections can cause the units to “compete” with
one another until only one has a non-zero activation. In our
system a decision is deemed to have been made when the
highest activation exceeds its nearest competitor by some
threshold value, S. This general architecture has been pro-
posed previously by Grossberg (1976) amongst others, and
has been employed in the modeling of a number of other

psychological phenomena (e.g. Houghton, 1990; Usher &
McClelland, 1995).

For the purposes of this simulation we assume that cate-
gory magnitude terms are defined by the function  v =
0.047c + 0.012, where c is the number of category-
appropriate elements the stimulus contains. The exact form
of this equation is not critical. It was chosen because it de-
scribes the behavior of a simple localist delta-rule network
with a learning rate of 0.0025. This learning rate was previ-
ously found to be successful in modeling the rate of learning
in similar experiments (Wills & McLaren, 1997). The im-
portant thing to note is that we are preserving the assump-
tion that category magnitude terms are independent of the
response alternatives available.

The magnitude term input activations (r) are assumed to
be noisy and, for simplicity, this noise is assumed to be
rectangular, have a mean of zero, and a range from -N to +N.
Magnitude input activations are also constrained to lie be-
tween 0 and 1. The specific shape of the noise distribution is
not critical and similar mean behavior could be produced
with a Gaussian distribution. The output activations of the
units are governed by the equations

o
o En

En D
= +

+ +1
, if n > 0 and o

o En

En D
= +

− +1
 otherwise,

where n is the total input the unit, and E and D are excita-
tion-rate and decay-rate constants respectively. These are
standard activation equations with properties similar to those
used by, for example, McClelland & Rumelhart (1985).
Output activations in our model are constrained to be non-
negative. Total input (n) for a given unit is the sum of r and
o for that unit, minus the sum of the outputs (o) of the
other units. For the current simulation E = 0.2, D = 0.1 and
N = 1.1. The threshold parameter S  was set to 0.18 for the
two-choice condition, 0.65 for the three-choice condition and
0.72 for the novel-elements condition.

In the two-choice condition of our experiment, partici-
pants were not allowed to make category A responses. In our
WTA model this was simulated by fixing the output activa-
tion of the category A unit at zero.

The results of our simulation are shown as lines in Figure
2. Note that the model respects all the major trends in the
experiment and is numerically close to the observed data. A
detailed discussion of the principles underlying the success
of this model is not possible here, but it is important to
note that the exact details of the implementation are not
critical. Indeed, not even the expression in connectionist
terms is essential. The model simply provides a mechanism
by which a decision similar in principle to Thurstonian
choice (Thurstone, 1927) can be made. We have demon-
strated in other analyses that simply choosing the noisy
alternative which is instantaneously the biggest does rea-
sonably well in predicting the trends in Measures 1 and 2
(whether one employs Gaussian or rectangular noise).

However, only the connectionist system correctly predicts
the trend in Measure 3. This is because it employs different
decision thresholds in the three-choice and novel-elements
conditions, which allows it to predict that Measure 3 falls
below unity without having to make the counter-intuitive



assumption that the category A magnitude term for a stimu-
lus containing no category A elements is greater than for a
stimulus containing four category A elements (the only way
a simple Thurstonian choice process could predict ratios
smaller than one).

Conclusion
The Ratio Rule as generally applied in formal models of
categorization was shown to be incorrect for the experiment
presented. Whilst further investigation is necessary, we sug-
gest that out results may indicate a need to replace the Ratio
Rule as currently employed with an alternative system
(perhaps still based around the Ratio Rule). One possibility
would be to substantially revise existing models so that they
provided a mechanism by which category magnitude terms
could be affected by the alternatives available for decision.
We have shown that our results do not require that this
modification be made. Rather, one simply needs to directly
substitute the Ratio Rule with a decision mechanism based
on the principles of Thurstonian choice. The noise employed
in this mechanism may have one of a number of distribu-
tions. As a caveat, one distribution it is unlikely to have is
a double exponential distribution because this would make it
indistinguishable from the Ratio Rule (Yellott, 1977).
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