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Two experiments are reported that investigate the effects of stimulus preexposure on dis-

crimination performance in a free classi® cation task, using adult humans as subjects. In free

classi® cation subjects are asked to put stimuli into gruops in any way that seems reasonable or

sensible to them. Experiment 1 shows that the effect of preexposure is contingent on stimulus

structure. Experiment 1b is the ® rst demonstration of a retardation in learning as a conse-

quence of simple preexposure in adult human subjects (previous demonstrations have relied

on incidental or masked preexposure). Experiment 2 further supports the conclusions of

Experiment 1 and extends them with the demonstration that stimulus similarity is a crucial

factor. Taken together, these experiments rule out a class of attention-based explanations of

the phenomena reported here. The experiments also provide novel information about the

effects of preexposure. Preexposure can change the actual classi® cations subjects form in

addition to altering the rate at which they are formed. Implications of these results for

current theories of category formation and perceptual learning are considered.

In Bruner, Goodnow, and Austin’ s (1956) classic investigations of category learning there

are three main methodological conventionsÐ the use of perceptually simple stimuli, the

presence of immediate and accurate membership information for each example seen, and

the use of categories de® ned by a simple logical rule. Even at that time the last of these

conventions was not universally adopted, and it has subsequently fallen out of favour. The

dif® culty of de® ning `̀ natural’ ’ categories in terms of singly necessary and jointly suf® -

cient conditions highlighted by Rosch (Rosch, 1973; Rosch & Mervis, 1975) and by

Wittgenstein (1958) led many investigators to direct their attention to stochastically

de® ned categories in which no single cue is entirely valid (e.g. Medin & Schaffer,

1978). The remaining two conventions, however, have gone largely unchallenged over

the intervening decades.

We de® ne `̀ perceptually simple stimuli’ ’ as those for which a naõ È ve observer, given the

full set, could easily determine the attributes relevant for classi® cation and could easily

discriminate between the different values that those attributes could take. For example,

one would have little dif® culty in determining that the single geometric shapes used by
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Shepard, Hovland, and Jenkins (1961, Exp. II and III, representation A) were either

triangular or square, large or small, and black or white. Given this de® nition, the vast

majority of the studies considered in three recent reviews of categorization research

(Estes, 1994; Shanks, 1995; Smith & Medin, 1981) use simple stimuli. Taking the same

three reviews, it is clear that a similar conclusion can be reached for immediate, example-

speci® c, category label information. Indeed, one might be forgiven for thinking that

`̀ category- learning experiment’ ’ was synonymous with `̀ two category, trial and error

with feedback’ ’. Estes acknowledges this in his review: `̀ The question of how a learner

in a natural environment selects the categories to be formed from among all those that

could be formed is beyond the scope of the theories developed or reviewed in this book’ ’

(Estes, 1994, p. 242).

Clearly, it can be bene® cial to simplify the categorization tasks administered to subjects

for experimental purposes, yet in attempting to make a dif® cult problem more tractable

we may be in danger of obscuring something important. It seems likely that learning to

categorize involves more than learning example± label correspondences. Equally, it is not

clear that in all important situations we would or could know a priori the appropriate

number of groups to use, or that our environment would act as an omnipresent, totally

reliable, item-by-item teacher. The number-of-groups constraint doesn’ t hold for a vari-

ety of situationsÐ learning about wild birds, grouping a collection of books or recordings,

and so forthÐ and it seems unlikely that the total-feedback constraint would hold even in

the most scholastic forms of learning. How do we learn to categorize in these circum-

stances? Can categories be developed as a consequence of experience with the appropriate

stimuli in the absence of explicit instruction?

Our interest in category development was prompted by consideration of the role that

perceptual learning might play in this process. The basic perceptual learning effect is that

simple preexposure to stimuli can enhance a subject’ s ability to discriminate between

them. The effect has been found in rats (Gibson & Walk, 1956; Hall, 1979) and in

undergraduates (Goss, 1953). We also know that, in undergraduates, learning to categor-

ize stimuli such as chequerboard patterns into two classes (each de® ned by a prototype)

leads to better discrimination both between and within categories (McLaren, Leevers, &

Mackintosh, 1994; McLaren, 1997). In pigeons, preexposure to a chequerboard pattern

leads to faster learning of a discrimination between two distortions of that pattern (Aitken,

Bennett, McLaren, & Mackintosh, 1996).

An experiment in the McLaren et al. (1994) paper was the starting-point for the

current investigation. In the experiment of interest, a different pair of randomly

generated chequerboard patterns was created for each subject. Being randomly generated,

the patterns were generally somewhat similar, sharing on average 50% of squares. The

two created patterns served as prototypes; the patterns actually presented to subjects were

distortions of these prototypes created by changing a proportion of the squares, at

random, from black to white or vice versa. Patterns were presented one at a time and

subjects learned to categorize them, with feedback, into one of two groups. These groups

corresponded to the sets of patterns created from the two prototypes.

After learning to categorize to criterion, subjects had to learn, simultaneously, four 2-

item discriminations. The pairs of stimuli used in these four discriminations were (a) the

two prototypes of the trained categories, (b) two new exemplars taken from one of the
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trained categories, (c) the prototypes of the previous subject’ s categories, and (d) two

exemplars from one of the categories of the previuos subject. Pairs (c) and (d) should be

relatively unfamiliar to subjects because each subject was trained to categorize examples

from a different pair of prototypes. Subjects made fewer errors on the discriminations

involving stimuli drawn from familiar categories than on discriminations involving stimuli

drawn from unfamilar categories, supporting the claim that discrimination between and

within familiar categories was better than that for novel categories.

This pattern of results can be explained by assuming that experience in categorization

can lead to perceptual learningÐ that is, exposure to the stimuli during categorization

leads to them being easier to discriminate per se, over and above any effect of the category

information received. Such a process (whose proposed mechanism will be described later)

could, no doubt, help `̀ ® ne-tune’ ’ categorization decisions, but we do not know the extent

to which perceptual learning resulting from familiarization with category exemplars might

in¯ uence category formation itself. We can ask whether preexposure has any effect on

category formation and, if it does, whether it simply accelerates the process of category

formation that would have occurred in any case or if it can also modify the ® nal solution

adopted in response to the categorization problem.

The distinction between the rate of category formation and its ® nal solution is

important in situations where more than one mapping from stimulus to response is

allowed. For example, given 16 wines, you could classify them as red, white, or roseÂ .

Alternatively, you could group them according to whether they were Chenin Blanc,

Muscat, Carbernet Sauvignon, or Merlot. A third option is to classify them on the basis

of whether they might best accompany meat, poultry, ® sh, or dessert. The question of

which classi® cation you use is distinct from the question of how accurately you apply

the classi® cation to the sample of winesÐ for example, the extent to which you confuse

Carbernet Sauvignon and Merlot. Would preexposure to wines simply lead to a more

accurate classi® cation along the same lines that would have occurred without preexpo-

sure, or might it also affect the classi® cation system used? It is dif® cult to distinguish

between the type of classi® cation used and the adequacy with which it is employed in a

standard category-learning procedure (such as two-category guess and correct-with-

feedback) because only one stimulus-to- response mapping is allowed. We need a pro-

cedure that allows us to study category formation rather than just the acquisition of

example± label correspondences.

Sequential free classi® cation is just such a procedure. In free classi® cation studies,

subjects are asked to put stimuli into groups in any way that seems sensible or reasonable

to them. In sequential free classi® cation, decisions about stimuli are made on an item-by-

item basis, and previous decisions cannot be referred back to or changed. This procedure

has previously been used by Evans and his associates (Bersted, Brown, & Evans, 1969;

Evans & Arnoult, 1967). Conclusions that can be drawn from his studies are limited, but

they do demonstrate that, at least for the histoform stimuli used, classi® cations produced

by some subjects are consistent with the underlying stimulus structure. In addition,

Bersted et al. (1969) showed that when subjects are unconstrained as to the number of

categories they can form, they tend to create more categories than experimentally de® ned.

The phrases `̀ consistent with underlying stimulus structure’ ’ and `̀ more categories

than experimentally de® ned’ ’ may require some explanation. In these studies, the
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experimenters have created examples that, due to the way they are constructed, are

considered by the experimenters to have come from three coherent groups. Subjects’

reponses are consistent with this underlying stimulus structure to the extent that the

individual groups they use in their classi® cations contain examples that come predomi-

nantly from just one of the experimenter’ s groups. A subject can be `̀ consistent’ ’ whilst

using more categories than experimentally de® ned if not all examples from a single

experimenter’ s group fall into a single group used by the subject. Bersted et al. (1969)

present some evidence that subjects are subdividing the experimenters’ categories into

high- and low- typicality sub-groups. How one may properly de® ne and assess this form

of `̀ consistency’ ’ is considered in a later section.

The experiments reported in this paper are, as far as we are aware, the ® rst to

investigate the relationship between perceptual learning and free classi® cation. As

such, our investigations should be taken for what they areÐ interesting, initial explora-

tions of the area, rather than a closed set of experiments providing a de® nitive answer

to a single question. In our ® rst experiment we set out to develop a free-classi® cation

task that would allow us to study the effects of stimulus preexposure on category

formation. Experiment 1a reports our attempt to extrapolate from the McLaren et al.

(1994) type of study to the free classi® cation paradigm using chequerboard stimuli

structured around prototype-de® ned categories. We predicted that preexposing sub-

jects to the type of stimuli they would later be asked to free-classify would increase

the `̀ consistency’ ’ of their classi® cations. We decided to investigate both two- and

four-category problems to increase the generality of any conclusions that we might

come to.

EXPERMIMENT 1

Dependent Measures

Previous studies of preexposure have used some measure of response accuracy to index its

effectsÐ for example, the number of trials required to reach a criterial level of perfor-

mance (Gibson & Walk, 1956) or the overall percentage of correct responses (McLaren et

al., 1994). Percentage correct and trials to criterion are both measures of the extent to which

the subjects are behaving as the experimenter wants or expects them to. With animal

experiments we typically tie our intentions for the subject to some event of primary

motivational signi® cance for it. With undergraduates, the motivation for responding

correctly is probably more subtle.

In free classi® cation, more than one stimulus to response mapping is allowed. There-

fore it is not possible to assess accuracy in the same way because no one response can be

considered to be individually right or wrong. Any single response is neither what the

experimenters expect for `̀ good’ ’ performance or what they do not expect. However, the

extent to which a set of responses follows our expectations can be assessed. In the

previous section we considered this informally by saying that if subjects are following

the experimenter-de® ned stimulus structure then we would expect each of their group-

ings to consist predominantly of examples from just one experimenter-de® ned group. We

also indicated that the reverse need not holdÐ if a subject divides a single experimenter’ s
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group into a number of sub-groups this can still be considered a good classi® cation as

long as each sub-group predominantly contains examples from a single experimenter’ s

group. In a sense, we are considering the experimenter’ s classi® cation as the coarsest

allowable perfect classi® cation. The assessment of the `̀ goodness’ ’ of subjects’ responses

is lowered if they reduce different experimenter-de® ned groups to a single group, but not

if they sub-divide them. This measure of goodness is clearly not identical to accuracy as it

is more normally de® ned so, in an attempt to avoid confusion, we refer to this quality as

`̀ consistency’ ’ . The term derives from the fact we are assessing the extent to which a

subject’ s classi® cations are consistent with the experimenter’ s classi® cations.

This informal consideration of what is meant by consistency is necessary, but it is

not suf® cient. How does one get from this general notion to a single variable that

captures the `̀ goodness’ ’ of free-classi® cation decisions without being artifactually

affected by the number of groups the experimenter and the subject use? The statistic

we adopted was based on CrameÂ r’s phi (CrameÂ r, 1946), which is designed to allow

measurement of the association (coprediction) between two categorical variables. Calcu-

lation of CrameÂ r’s phi ( F c) begins by computing the chi-square statistic (without

correction for continuity) from a c by r contingency table of the two variables (see

e.g. Howell, 1992, p. 147± 148). In our case c will be the number of experimenter-

de® ned categories presented and r the number of subject-de® ned groups containing

at least one stimulus. If we de® ne k as the smaller of r and c, and N as the number of

stimuli grouped, then CrameÂ r’s phi is given by:

x 2

f c = Ö 1
N(k 2 1)

Phi has the desirable characteristic of varying from 0 (no association) to 1 (maximum

association) for any r and c, but as it stands this statistic has a serious drawback. Its

expected value will vary with the size of the contingency tableÐ the larger the values

of r and c the larger the expected value of phi. This makes it invalid to compare between

subjects using different numbers of groups and categories. This is precisely what we

wanted to do in the experiments reported below, so this limitation was unacceptable.

Our solution was to use phi adjusted for the value expected by chance and then scaled

such that 1 represents perfect association and 0 the chance level. Formally, f adj was given

by:

f c 2 f chance
f adj =

1 2 f chance 2

f chance is, to a ® rst approximation, given by substituting (r 2 1).(c 2 1) for x 2
in Equation

1. This approximation is based on an assumption that the chance expectation can be

derived from the mean value of x 2
, which is given by its degrees of freedom (see Howell,

1992). Such an approach, however, takes no account of the effect that the square-root

transform has on the chi-square distribution, and a more accurate approximation makes

use of the fact that Ö x 2
is approximately normally distributed with mean
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2df 2 1Ö 3
2

(see Rosenthal & Rosnow, 1984, p. 457). This gives

2(r 2 1)(c 2 1) 2 1
f chance = Ö 4

2N(k 2 1)

In order to assess the usefulness of this approximation we used numerical methods,

running a separate `̀ Monte Carlo’ ’ simulation (1 3 10
6

iterations) of random responding

to an equal number of examples from each experimenter-de® ned category, for each size of

contingency table that could potentially arise in the forthcoming experiments (2 3 2, . . .,

10, and 4 3 2, . . ., 10). We found a good ® t to the approximation given here for f chance,

but an even better ® t could be obtained by replacing N in the denominator with N 2 1,

giving

2(r 2 1)(c 2 1) 2 1
f chance = Ö 5

2(N 2 1)(k 2 1)

which is the approximation used in this paper. We believe that this small modi® cation

stems from the fact that we are dealing with contingency tables in which the marginal row

totals are always equal (because the same number of examples from each category are

presented) and in which all cells are constrained to contain at least one count.

Given this formula for f chance, f adj is always 1 for perfect association (coprediction)

and 0 for the degree of association expected by chance, independent of the size of the

contingency table. f adj gives us a measure of the consistency (as previously de® ned) of a

set of a single subjects’ classi® cation decisions, with respect to the category structure

de® ned by the experimenter. The measurement that it gives is independent of the number

of groups the subject and experimenter use.

To illustrate this latter property, consider two different subjects in an experiment with

two categories (A and B). Subject 1 uses two groups (1 and 2) and always responds `̀ 2’ ’ to

Category A and `̀ 1’ ’ to Category B. Her f adj will be 1. Subject 2 uses four groups (3, 4, 5,

and 6). He always responds `̀ 6’ ’ or `̀ 3’ ’ to Category A and `̀ 5’ ’ or `̀ 4’ ’ to Category B. His

f adj will also be 1. This basic principle also holds for non-perfect classi® cations. Of

course, f adj can not compensate for the fact that it might be harder to keep four groups

in mind than two and so the number of groups a subject uses may well affect the subject’ s

consistency score. However, the reduction one might expect is not an artifact of the

statisticÐ it represents a real difference in the consequences of using different classi® ca-

tion systems. A similar point can be made about changes in the number of categories the

experimenter uses in constructing the stimuli. Raising this number may increase the

dif® culty of the task subjects’ face and so may reduce their consistency score. However,

this will be as a result of their making more errors, and not due to a simple artifact of

increasing the size of the contingency table. Whatever the number of experimenter-

de® ned categories, perfect responding will produce a f adj of 1, and chance responding

will produce f adj scores that average to zero.
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As our measure of consistency is independent of the number of groups a subject uses,

we can employ the number of groups used as a second orthogonal dependent variable.

Our ® rst experiment examined the effect of preexposure on the consistency of subjects’

classi® cations when faced with a two-category problem or with a four-category problem

and its effect on the number of groups they used. Free classi® cation was divided, by

pauses, into a series of 15 equal blocks, so that changes in consistency with increasing

classi® cation experience could be assessed.

Method

Subjects and Apparatus

The subjects were 48 adults, aged between 18 and 30, who were paid for their participation. Most

were graduate or undergraduate students at Cambridge University. Subjects were tested individually

in one of two quiet experimental cubicles. Each cubicle contained an Acorn microcomputer con-

nected to a 14-in. colour monitor. The two computers were not identicalÐ one was an Acorn A5000/

AKF50 and the other was an Acorn Risc PC600/ AKF60Ð but these two machines were very similar,

and the program ran identically on both without modi® cation. Subjects sat about 1 m from the

screen, which was approximately at eye level.

Stimuli

Each stimulus was a 16 3 16 array of black and white squares. These `̀ chequerboards’ ’ measured

2.5 cm on a side and were presented in the centre of the screen against a mid-grey background. For

each subject a new master pattern was generated, and four prototype patterns were produced from it.

The master pattern was a chequerboard of 128 white squares and 128 black squares, randomly placed.

Each prototype differed from the master pattern by exactly 64 squares, a completely different 64

being selected for each prototype. The process of creating the four prototype patterns was random

within these constraints.
1

Squares were changed by reversing their shade (black to white or vice

versa). Figure 1 shows four example prototype patterns. The examples that were actually presented

to subjects were created from the prototypes by subjecting each square to asmall independent chance

(p = .05) of reversing its colour.

Procedure

The experiment was of a 2 3 2 factorial between-subjects design; the two factors were

preexposure (2 levels) and a number of categories (2 levels). Hence there were four between-

subject conditionsÐ preexposed two category, preexposed four category, non-preexposed two

category and non-preexposed four category. The main difference between two-category and

four-category conditions was in the stimuli presented. In the four-category conditions all four
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If random creation of four prototypes, each of which differs from a master pattern by exaclty 64 different

squares, seems untenable, then consider the following example. Imagine a bag, which contains 64 chips with a

`̀ 1’ ’ written on, 64 with a ``2’ ’ , 64 with a ``3’ ’ , and 64 with a ``4’ ’ . Shake the bag well, and then lay one chip on

each square of the master pattern. Now, to construct the four prototype patterns, which we shall call 1, 2, 3, and

4, change the colour of squares containing a correspondingly numbered chip, leaving the colour of the remainder

unaltered. The stimuli used in this experiment were created with the aid of a computer, but the process was

isomorphic with the one described here.



prototypes were used to create stimuli, whereas in the two-category conditions only two prototypes,

randomly selected at the beginning of the experiment, were used.

Each condition has two phases. In the preexposed conditions Phase 1 was running recognition

and Phase 2 was free classi® cation (procedures given below). In the non-preexposed conditions,

Phase 1 was an unrelated experiment of approximately the same duration as the running-recognition

phase, and Phase 2 was again free classi® cation.

Running-Recognition Phase. Subjects were given instructions on a printed sheet, and any ques-

tions were answered by reiterating the printed instructions. These instructions were as follows

(paragraphing lost for compactness):

In this experiment you will be shown a lot of items. Here is an example of one item on a

grey background: [example chequerboard pattern]. The items will appear on the computer

screen one at a time. Each item will be shown exactly twice. Your task is to decide, for each

shape, whether it is the ® rst or the second time you have seen it. If it is the ® rst time, you

should press [picture of the X key] on the keyboard. If it is the second time, you should

press [picture of the > key] on the keyboard. You will have quite a bit of time to make each

of these decisions. However, if you take too long, the computer will beep and tell you so. Try

to avoid this happening. The computer will also beep if you press any key apart from the two

shown above. If this happens please tell the computer your decision again, using one of the

proper keys. After you have put about ® fty items into groups the computer will stop. At this

point, all the shapes will have been shown twice. This is the end of a `block’. There are [ ® ve

or ten] blocks in this experiment, and each block uses a totally different set of shapes. At the

end of a block it is a good idea to rest for a few seconds. When you are ready to start again,

press Y on the keyboard.
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Fig. 1. Four examples of the type of chequerboard stimuli used in Experiment 1. Four prototype patterns

created from the same master pattern are shown. The rectangle outlines enclosing the stimuli represent the

beginning of the mid-grey background against which they were presented; they are not part of the stimulus itself

and were not presented to subjects.



The `̀ X’ ’ and `̀ >’ ’ keys are both on the bottom row of a standard computer keyboard. Immediately

after the subject had responded to a pattern, the pattern disappeared and was replaced by the next

one. Subjects were given a maximum of 5 sec to respond before being timed-out and asked to respond

more quickly in future. After making 48 decisions, the computer signalled the end of a block by

clearing the screen and requiring a key press. There were either ® ve or ten blocks of trials. Five

blocks were used in the preexposed-two-category condition and ten in the preexposed-four-category

condition, thereby equalizing the amount of exposure given per category.

Within a block, 24 different chequerboards were each presented twice. All were examples created

from a relevant prototype, with an equal number coming from each one. In the preexposed-four-

category condition, six examples from each of the four prototypes were used, whereas in the pre-

exposed-two-category condition 12 examples from each of two prototypes were used. A check was

made to ensure that across all blocks any given pattern only occurred twice. If this was not the case

then a whole new set of randomly generated examples was created. This was made possible by

creating all patterns and checking them before presenting any to the subject (the subject did not

observe this process).

The ordering of stimuli within a block was a little complex. First, all of the 24 different stimuli to

be presented in a block were placed in a list in a random order. Second, each of the 48 trials in a block

was randomly designated as a `̀ no’ ’ trial (stimulus not presented before) or a `̀ yes’ ’ trial (stimulus

presented once before) with the constraints that the ® rst three trials were no trials, the last was a yes

trial, and there were an equal number of no and yes trials. Then two pointers were placed at the

beginning of the stimulus order list (one for no trials and one for yes trials). Finally, for each trial in

order the stimulus indicated by the appropriate pointer was inserted into a ® nal list, and the pointer

was moved to the next item in the order list (the example given in Figure 2 should make this stage

somewhat clearer). This somewhat convoluted procedure was designed to reduce the effectiveness of

position within a block as a cue for if a stimulus was being presented for the ® rst or second time (at

least for the range trial 4 to trial 47).

Free-Classi® cation Phase. Subjects were given instructions on a printed sheet and questions

were answered by reiterating the printed instructions. The sheet read as follows:

This experiment involves putting things into groups. Here is an example of one item, on a grey

background [example chequerboard pattern]. The items will appear on the computer screen one

at a time. At ® rst, all the items might seem to be very similar. However, they can actually be put
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FIG 2. An example of the method of trial ordering used in the running-recognition phase of all experiments.

The four sub- ® gures titled `̀ Trial 1’ ’ , `̀ Trial 2’ ’ etc. are the ® rst four trials of the running-recognition phase. The

Yand N in bold type represent the pointer for ``yes’ ’ trials and `̀ no’ ’ trials, respectively. The list of four numbers

are the ® rst four chequerboards to be presented (they read 6, 2, 3, 1 rather than 1, 2, 3, 4 to illustrate that the

patterns have been randomly ordered). The number in brackets is the pattern actually presented on that trial.

The list of Ns and Ys in plain type is the sequence of yes and no trials. The sequence of yes and no trials

determines for each trial which pointer indicates the stimulus to be presented and which pointer is ignored. The

chosen pointer is moved one item along the list after stimulus selection and before the next trial. On trial 5, the Y

pointer would be over the 2.



into a number of groups and this is what you will be asked to do. When an item appears on

the screen, you put it in a group by pressing a key on the keyboard. You can use any of the

following keys: [picture of the number keys 1 to 9 plus 0 on the top row of a computer

keyboard]. To start with, you will obviously be guessing. Do not worry about this. As you

put more and more items into groups, you should get more idea about how they should be

grouped. As you go along, you may think that there are more groups than you are currently

using. Alternatively, you may decide that you are using too many groups and it is actually

better to use less. If either of these things happen, feel free to use more or less keys as

appropriate. You have quite a bit of time to put each object into a group. However, if you

take too long, the computer will beep and tell you so. Try to avoid this happening. The

computer will also beep if you press any key apart from the ones shown above. If this

happens, please put the item into a group using one of the proper keys. After you have

put about ® fty items into groups the computer will stop. This is the end of a block, not the

end of the experiment. At this point you can rest for a few seconds, but it is very important

that you do not forget which keys you have been using. When you are ready to start again,

press Y on the keyboard. There are ® fteen blocks.

No explicit reference to the previous phase was made.

As soon as a subject had responded to a pattern, the pattern disappeared and was replaced by

another. Subjects had a maximum of 5 sec to reach a decision about each pattern. After 48 patterns

had been classi® ed, the computer signalled the end of a block by clearing the screen and requiring a

key press to continue.

Subjects classi® ed 15 blocks of patterns. In the four-category conditions, 12 examples from each

of the four prototypes were presented in a random order. In the two-category conditions, 24 examples

from each of the two selected prototypes were presented, again in random order. If the subjects had

just completed a running-recognitionphase, then the prototypes used to construct the examples were

the same as in that phase.

As a consequence of our design, subjects in the two-category conditions saw twice as many

examples per category overall as did subjects in the four-category conditions. However, it also meant

that subjects classi® ed the same number of stimuli in one block of the four-category conditions as the

number in one block of the two-category conditions. As we wished to compare the consistency scores

of subjects in the two- and four-category conditions it seemed important that the experience they had

within a block was otherwise equivalent.

Results

Separate one-sample t tests ( m = 0), were run on subjects’ adjusted CrameÂ r’ s phi scores

on the last block of each of the four conditions. In all conditions, scores were signi® cantly

greater than zero, t(11) = 25, 9.3, 18, and 7.6 for the two-category± non-preexposed, four-

category± non-preexposed, two-category± preexposed, and four-category± preexposed

conditions, respectively. In other words, subjects in all four conditions were, as a group,

making classi® cations reliably more consistent with the underlying stimulus structure

than would be expected by chance. However, closer inspection of individual subject

data revealed some subjects whose scores across 15 blocks were close to zero. A one-

sample t-test ( m = 0) was performed on each subject’ s 15 scores (p > .05, one-tailed). One

subject’ s scores did not differ signi® cantly from zero, and they were excluded from

further analysis. To balance the effect of this exclusion, the subject with the lowest
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mean f adj in each of the other three conditions was also excluded. These four subjects

were not included in any subsequent analysis.

This particular exclusion criterion was chosen because it indicated for the remaining

subjects that their set of 15 classi® cations were reliably more consistent with the category

structure that we had de® ned than what would be expected by chance. This criterion does

not demand that a subject is above chance on any particular block, just that his or her set

of classi® cations are, as a whole, reliably above chance. However, it does allow us to

consider only those subjects whose classi® cations are in accordance with the categorical

structure we have imposed. Of course it is possible that such a criterion might exclude the

vast majority of subjects if, for example, the way we de® ned our stimuli was totally at odds

with how people perceived or grouped them. However, this does not appear to be the case

for this experiment.

Figure 3a shows the mean f adj in all four conditions for each of the 15 blocks of the

classi® cation phase. A mixed-design analysis of variance (ANOVA), with one within-

subject variable (block, 15 levels) and two between-subject variables (preexposed vs.

non-preexposed and two categories vs. four categories) was performed, revealing three

effects. First, a main effect of category indicated that classi® cation was less consistent in

the four-category conditions than in the two-category conditions, F(1, 40) = 21, p < .001.

Second, a main effect of block revealed that consistency improved across blocks,

F(14, 560) = 11, p < .001. Third, preexposed subjects were initially more consistent

than non-preexposed subjects, an effect that diminished as the classi® cation phase pro-

ceeded. This was indicated by a signi® cant Preexposure 3 Block interaction, F(14, 560)

= 2.8, p < .05, after a conservative correction for non-sphericity (Greenhouse & Geisser,

1959). No other effects approached signi® cance in this analysis, p > .13 in all cases.

Following the signi® cant Preexposure 3 Block interaction, a simple effects analysis

revealed a signi® cant difference between preexposed and non-preexposed subjects at

Blocks 1, 2, 3, and 4, F(1, 40) = 8.6, 5.5, 4.9, and 5.0, respectively, p < .05 in all cases.

A signi® cant effect of block was found for non-preexposed subjects, F(14, 560) = 12, p <

.001. The effect of block in the preexposed conditions was marginally signi® cant,

F(14, 560) = 1.7, p = .06.
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The other main source of information available is the number of groups used by our

subjects. Figure 3b shows the mean number for all conditions in each of the 15 blocks. A

mixed-design ANOVA revealed two signi® cant effects. First, a signi® cant effect of block

was found, indicating that subjects used fewer keys as the classi® cation phase proceeded,

F(14, 560) = 5.1, p < .001. Second, a main effect of category was seen, such that subjects

in the four-category conditions used more keys than did subjects in the two-category

conditions, F(1, 40) = 4.6, p < .05. In addition, there was some evidence of an interaction

between category and preexposure, although it failed to reach signi® cance, F(1, 40) = 2.4,

.1 < p < .15. No other effects or interactions approached signi® cance, p > .12 in all cases.

The marginal interaction and inspection of the means led us to the post hoc hypothesis

that the difference between the number of keys used in two- and four-category problems

was limited to the non-preexposed conditions. A simple effects analysis provided some

tentative support for this notionÐ a signi® cant difference was found between the number

of groups used in the two-category± non-preexposed and four-category± non-preexposed

conditions, F(1, 40) = 6.8, p < .05, whereas no other effects were signi® cant, max F(1, 40)

= 1.4, p > .2. This result is reported not because we are convinced of its reliability but

because it is interesting and might be worthy of investigation in future experiments.

Discussion

The result of central importance is that subjects exposed to examples from the categories

they would later be classifying produced, at least initially, more consistent classi® cations

than did those who were not preexposed. We expected to see some bene® t of preexposure

early on in classi® cation as this would be congruent with a perceptual learning effect (i.e.

an increase in stimulus discriminability) analogous to that seen in McLaren et al. (1994).

The effect would be transient because the classi® cation experience itself would also allow

perceptual learning, and so the effects of preexposure would be progressively diluted as

classi® cation progressed.

It would, however, be premature to accept this explanation because there are a number

of potential alternative explanations that cannot be discounted at this point. For example,

preexposed subjects have more experience at making decisions about black and white

patterns under time pressure than non-preexposed subjects, which may lead to some sort

of non-speci® c speed up. In other words, the bene® cial effect of preexposure may be

entirely due to increased familiarity with the general task, rather than increased familiarity

with the stimuli. It is also possible, although perhaps unlikely, that subjects are covertly

free classifying stimuli in the preexposure phase. Hence they would be better than non-

preexposed subjects at classifying the stimuli on Block 1 of the free-classi® cation phase

because they are effectively on at least Block 6 at this point. We consider this second

alternative to be unlikely given the highly demanding nature of the running- recognition

task and the fact that classifying stimuli into similarity-based groups would, at best, make

the task no easier. However, neither alternative can be rejected on the basis of evidence at

this pointÐ this will be one of the issues confronted by the two experiments to follow.

The results of the current experiment also give us some interesting information about

the free-classi® cation process. One of the immediately apparent effects was that subjects

faced with a two-category structure were more consistent than those faced with a four-
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category structure. This is not surprising given that the four-category version of the task

is intrinsically more dif® cult, requiring more information on the part of the subject to

achieve perfect performance. However, subjects faced with a four-category structure also

use more groups. This con® rms that the form that subjects’ classi® cations take is sensitive

to fairly subtle differences in stimulus structure, and that subjects respond appropriately

to these changes.

In all conditions, the number of groups used decreases as classi® cation experience and

classi® cation consistency increase. This is clear evidence of the subjects learning some-

thing through classifying the stimuli. They are converging on a better degree of agree-

ment with the programmed category structure in terms of both number and consistency

of groupings. The non-signi® cant interaction between preexposure (preexposed vs. non-

preexposed) and categories presented (two or four categories) seen in the groups-used

data, along with the associated trends in the means and simple effects, suggest that

preexposure may modify this relationship in a non-trivial way. However, it would be

unwise to overplay the importance of this result without further, more reliable, data.

EXPERIMENT 1B

The purpose of this experiment was to provide a sophisticated control for Experiment 1a.

The basic idea was to replicate Experiment 1a in all aspects except the method of con-

structing examples from prototype patterns, this time using a method that we hypothe-

sized would not lead to a signi® cant bene® cial effect of preexposure. If this hypothesis

turned out to be correct, then we would have demonstrated that the original preexposure

effect was dependent on speci® c properties of the stimulus rather than increased famil-

iarization with the general taskÐ hence supporting a perceptual learning explanation.

The choice of an alternative example-construction method was based on a series of

informal conjectures that had previously found some support in a different task. Previous

studies have shown that the effect of inverting a stimulus on a subject’ s ability to identify

it as previously seen is dependent on both familiarity with the stimulus class (Diamond &

Carey, 1986) and the type of stimulus used (Yin, 1969). In a recent paper, McLaren (1997)

suggested that such results might be partially understood in terms of perceptual learning

if one assumed perceptual learning was only effective for `̀ prototype-based’ ’ stimuli.

Prototype-based stimuli were de® ned as coming from a category of examples, which, if

you averaged the set on a point-by-point basis, gave a pattern that was also an example of

the category. Hence, size-matched pictures of faces would be an example of prototype-

based stimuli but pictures of landscapes would not. McLaren went on to provide evidence

that familiarity modulates the effect of inversion on the discriminability of pairs of

chequerboard patterns, but only if the familiarized set was prototype-based.

The non-prototype-based stimuli used in McLaren (1997) were created from base

patterns by randomly reordering the rows (`̀ shuf¯ ed’ ’ stimuli) rather than giving each

square an independent chance of reversing its colour. They are non-prototype± based in

the sense that averaging these shuf¯ ed stimuli square by square would lead to a stimulus

of 16 grey vertical bands of various intensities rather than another, prototypical, chequer-

board pattern. If this change in the method used to construct examples were to affect

signi® cantly the impact of preexposure on free-classi® cation decisions then we would
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have evidence that would be hard to explain on the basis of general familiarity with either

the task requirements, or black and white stimuli as a general class.

Method

Subjects and Apparatus

The subjects were another 48 adults, again mostly graduate and undergraduate students from

Cambridge University, aged between 18 and 30 and paid for their participation. The apparatus was

that used in Experiment 1a, except that both computers were Risc PC600s connected to AKF60

monitors.

Stimuli

For each of the four experimental conditions, the 12 sets of category prototypes produced in

Experiment 1a (1 set per subject, 12 subjects per condition, hence 12 sets per condition) were

allocated in a random order to the subjects in this experiment. We use the term prototype here

for convenience in designating stimuli that did act as prototypes in Experiment 1a, but de® ne

categories without being prototypes for them in this experiment. Hence, in terms of the prototypes,

for each subject in Experiment 1a there was a corresponding de® ning stimulus in this experiment.

Category exemplars were produced by randomly reordering the 16 rows of the appropriate de® ning

stimulus. For example, the 9th row of the de® ning stimulus might appear as the 1st row of the

exemplar, the 3rd as the 2nd, the 15th as the 3rd, and so on. This de® nes categories made up of sets of

exemplars all of which have an equal standing as category members. There is no prototype, as the

central tendency of the exemplars of a given category will be a columnar arrangement of greys rather

than a chequerboard and, by de® nition, a prototype has to be a member of the set of examples for

which it is a prototype.

Procedure

The procedure was identical to that in Experiment 1a.

Results

Experiment 1b

Separate one-sample t tests ( m = 0), were run on subjects’ adjusted CrameÂ r’ s phi scores

on the last block of each of the four conditions. In all conditions, scores were signi® cantly

greater than zero, t(11) = 2.7, 4.4, 3.5, and 3.2 for the two-category± non-preexposed,

four-category± non-preexposed, two-category± preexposed and four-category± preexposed

conditions, respectively, p < .05 in all cases. As before, inspection of individual subject

data revealed some subjects whose scores across 15 blocks were close to zero. A one-

sample t test ( m = 0) was performed on each subject’ s 15 scores (p > .05, one-tailed).

Subjects whose scores did not differ signi® cantly from zero were excluded. As more

subjects were removed on this basis in some conditions than in others, further subjects

were excluded until the group sizes were equal. The subjects selected for exclusion were
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those with the lowest mean f adj. Eight subjects were removed in all (two per condition),

and were not included in any subsequent analysis.

Figure 4a shows the mean f adj in all four conditions for each of the 15 blocks of the

classi® cation phase. A mixed-design ANOVA, with one within- subject variable (block, 15

levels) and two between-subject variables (preexposed vs. non-preexposed and 2 cate-

gories vs. 4 categories) revealed three effects. First, classi® cation is less consistent in the

four-category conditions than in the two-category conditions, F(1, 36) = 7.9, p < .01.

Second, consistency improves across blocks, F(14, 504) = 2.6, p < .01. Third, consistency

was lower in the preexposed conditions than in the non-preexposed conditions, F(1, 36)

= 4.8, p < .05. The interactions were non-signi® cant, p > .3 in all cases.

Figure 4b shows the mean number of groups used for all conditions in each of the 15

blocks. A mixed-design ANOVA revealed two effects. First, subjects used fewer groups as

the classi® cation phase proceeded, F(14, 504) = 8.0, p < .05. Second, preexposed subjects

used fewer groups than did non-preexposed subjects, F(1, 36) = 5.0, p < .05. The trend

for subjects in the four-category conditions to use fewer keys than subjects in the two-

category conditions is non-signi® cant, F(1, 36) = 2.8, p = .1. No other effects or inter-

actions were signi® cant, p > .15 in all cases.

Comparison of Experiments 1a and 1b

Given that the designs of Experiments 1a and 1b differ only in their stimulus structure,

it is useful to compare them directly in one overall analysis. Comparison of Figures 3

and 4 suggests some important differences in the f adj data between Experiments 1a and

1b. A mixed-design ANOVA with one within-subject variable (blocks, 15 levels) and

three between-subject variables (Exp. 1a vs. Exp. 1b, two vs. four categories, and pre-

exposed vs. non-preexposed) revealed a number of signi® cant results. Consistency was

lower in Experiment 1b than in Experiment 1a, F(1, 76) = 137, p < .001, and con-

sistency increased faster in Experiment 1a than in Experiment 1b, as indicated by a

signi® cant Experiment 3 Block interaction, F(14, 1,064) = 2.1, p < .05, after correction
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for non-sphericity. The difference between the effect of preexposure in the two experi-

ments is signi® cant, as indexed by an Experiment 3 Preexposure interaction, F(1, 76) =

6.2, p < .05. The increase in consistency across blocks and higher consistency for two-

category conditions, seen in both experiments, remained signi® cant when collapsing

across them, demonstrated by a main effect of block, F(14, 1,064) = 9.5, p < .001, and

a main effect of category F(1, 76) = 26, p < .001, respectively. There was also a signi® cant

Preexposure 3 Block interaction F(14, 1064) = 2.6, p < .05, after correction for non-

sphericity. No other effects or interactions were signi® cant, p > .4 in all cases.

From our account of the effects in this pair of experiments, the ® rst block has parti-

cular signi® cance because it gives the assessment of perceptual learning in preexposure,

which is least contaminated by possible perceptual learning during free classi® cation.

Given the signi® cant Preexposure 3 Block interaction in the above analysis, and given

the importance we attach to the ® rst block, we performed a second analysis of variance on

the data from the ® rst block only. Other than the main effects of experiment and category

already found in our analyses thus far, there was a main effect of preexposure, F(1, 76) =

4.6, p < .05, re¯ ecting the overall dominance of the bene® cial effect of preexposure found

in Experiment 1a, and also an Experiment 3 Preexposure interaction, F (1, 76) = 5.0, p <

.05, indicating that the effects of preexposure on performance in the ® rst block differed

signi® cantly in the two experiments. No other effects approached signi® cance, p > .2 in all

cases.

A ® nal mixed-design ANOVA was performed, this time on all 15 blocks of the groups-

used data from Experiments 1a and 1b. Three effects were revealed. First, the effect of the

number of categories present on groups used was found to differ signi® cantly between

experimentsÐ the Experiment 3 Category interaction gives an F(1, 76) = 6.9, p < .05.

Second, the effect of preexposure on groups used seemed to be different in the two

experiments, although the Experiment 3 Preexposure interaction was only marginally

signi® cant, F(1, 76) = 3.6, p = .06. Third, unsurprisingly, the decrease across blocks of

the number of groups used seen in both experiments remained signi® cant when collap-

sing across them, F(14, 1 064) = 12, p < .05. No other effects were signi® cant, p > .08.

Discussion

The results of Experiment 1b sugegst that it was more dif® cult to classify the stimuli used

in that experiment than those used in Experiment 1a. Overall consistency was lower,

learning was less rapid, and differences in the number of categories programmed was not

re¯ ected by differences in the number of groups that subjects used. The trend for

subjects to use fewer groups in a four-category problem than in a two-category problem,

although not reliable, is also slightly concerning. Nevertheless, we would argue that

subjects were able to learn to classify these stimuli in a way that somewhat re¯ ected

the programmed category structure. The improvement in consistency over blocks was

signi® cant, and performance on the ® nal block was signi® cantly above chance in all

conditions. We were not surprised that subjects found free classi® cation with these stimuli

more dif® cult, as the variation in stimuli drawn from a given category was necessarily

much greater than that in Experiment 1a, and caution must be exercised in comparison of

the two experiments for this reason. Even so, we do believe that Experiment 1b provides
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valuable information that helps us understand the results of Experiment 1a as well,

particularly as far as preexposure is concerned.

The effects of preexposure in Experiments 1a and 1b are quite different as far as the

consistency measure is concerned. Preexposure enhances consistency in Experiment 1a,

particularly on the ® rst few blocks, whereas it lowers consistency in Experiment 1b,

particularly after the ® rst few blocks. Such a result does not seem consistent with the

notion that preexposure simply increases familiarity with the general task requirements or

increases the ability of subjects to make rapid decisions about small black and white

stimuli in general. If this were the case then we would expect preexposure to be bene® cial

in both Experiment 1a and Experiment 1b. Instead, the effects of preexposure appear to

depend on the precise stimulus structure employed in the experiment.

It also seems dif® cult to explain the difference between Experiments 1a and 1b by

assuming covert free classi® cation of examples in the preexposure phase. Consistency

improves with increasing classi® cation experience in both Experiment 1a and Experiment

1b. Hence, if subjects were covertly free classifying, we would expect preexposure to be

bene® cial in both cases. We would not predict that preexposure should make the subjects’

responses signi® cantly less consistent with the programmed category structure. However,

this is exactly what happened in Experiment 1b. The result is all the more remarkable

given that overall consistency is not very goodÐ if there had been any tendency for

preexposure to improve performance it should have been evident in this experiment.

Preexposure leading to worse performanceÐ the complement of perceptual learningÐ

is an effect that has been seen before in humans and other mammals, often going under

the title `̀ latent inhibition’ ’ . However, it has previously been assumed that adult humans

must direct their attention away from the presented stimuli to show this effect (see

Lubow, 1989, for a review). Although subjects in this experiment are doing different

tasks in the preexposure and free-classi® cation phases, it seems clear that they must direct

their attention towards the stimuli to perform (reliably) above chance during preexposure.

This point is worth emphasizing because, as far as we are aware, this experiment

constitutes the ® rst evidence of latent inhibition in adult humans without a concurrent

distracting task. The implications of this will be considered in more detail later, but two

points must be made immediately clear. First, in describing this effect as latent inhibition

we are simply referring to the fact that a retardation in learning as a result of simple

stimulus exposure has been demonstrated. We are not, at this point, making a statement

about the process that is assumed to underly the result (this will come later). Second,

although we did not expect prior to running the experiment that preexposure should

signi® cantly reduce the consistency of free-classi® cation decisions, the result is, in fact,

predicted by the application of a theory forwarded by one of the authors several years

before the experiment was run (McLaren, Kaye, & Mackintosh, 1989). This will be

discussed after reporting the ® nal experiment in this investigation.

The effects of preexposure on key use seen in Experiment 1b is different to that

seen in Experiment 1a. In Experiment 1b, preexposure reduced the number of keys

used by subjects, irrespective of the number of categories programmed. Although the

exact effect of preexposure on key use in Experiment 1a is somewhat unclear, a com-

parison of the two experiments suggested that the effects seen in the two experiments

were different. Even without comparison to Experiment 1a, Experiment 1b provides
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clear evidence that preexposure can affect the classi® cation system that a subject decides

to adopt. Classi® cations using different numbers of groups are obviously not equivalent.

A tentative explanation of the changes in the number of groups used as a result of

preexposure is offered in the General Discussion.

EXPERIMENT 2

Taken together, Experiments 1a and 1b are only the second demonstration in humans that

perceptual learning is contingent on both preexposure and stimulus structure (McLaren,

1997, being the ® rst). In our next experiment we further extend this result by manipulat-

ing stimulus structure in a different way. Previous studies with rats have demonstrated

that a bene® cial effect of stimulus preexposure is dependent on the exposed stimuli being

fairly similar. For example, in a taste-aversion procedure Mackintosh, Kaye, and Bennett

(1991) found that simple exposure to two compound ¯ avours with a common component

(lemon± saline and lemon± sucrose) led to an enhanced ability to discriminate them later,

compared to non-preexposed controls. However, preexposure to two simple ¯ avours

(saline and sucrose) had no signi® cant effect on their discriminability.

Chamizo and Mackintosh (1989) found a similar result with a different procedure.

They demonstrated that if rats had to discriminate between one arm of a maze that had a

black rubber ¯ oor and another that had a red sandpaper ¯ oor, then simple prior exposure

led to a slight facilitation. However, if the walls of one arm were then painted white, and

the walls of the other were painted black (presumably reducing the similarity of the two

arms) then preexposure led to a worsening in discrimination performance.

In our ® nal experiment, we investigated whether an analogous effect could be demon-

strated in the free classi® cation of preexposed chequerboard patterns. We varied the

similarity (assessed on a square-by-square basis) of the prototype chequerboard patterns

used to create the examples presented to subjects. The prediction was that a larger

perceptual learning effect would be seen for subjects in the condition with more similar

prototypes. Note that if preexposure causes changes in stimulus discriminability then the

size of its effect should be dissociable from overall performance on the free classi® cation

task. For example, free-classifying stimuli produced from very similar prototypes might

be more dif® cult than free-classifying stimuli from moderately similar prototypes, but

performance on the former task might be improved more by preexposure.

We decided that the most useful, least contaminated data on the effect of preexposure

on the consistency of free-classi® cation judgements would be found in the ® rst block of

free classi® cation. There were two reasons for this conclusion. First, the results of

Experiment 1a indicated that the bene® cial effects of preexposure were only detectable

early in free classi® cation, and were numerically largest in the ® rst block. Second, in the

® rst block any effects of perceptual learning due to preexposure would be minimally

contaminated by any effects of perceptual learning in free classi® cation. Despite the

importance we attach to Block 1, we decided there was little to be gained (apart from a

few minutes of our subjects’ time) by not running the remaining 14 blocks run in the

previous experiments.

To recap, one purpose of the experiment described below was to test the in¯ uence of

prototype similarity on preexposure effects. However, to increase ef® ciency in data col-
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lection we decided to include, in the same experiment, a further test that the effects of

preexposure are stimulus speci® c. If preexposure effects are stimulus speci® c, one might

expect that preexposure to entirely random chequerboard patterns would not be as

bene® cial as preexposure to patterns that were all validly produced from the prototype

patterns. At the absolute limit, we might expect no effect of preexposure to random

patterns because their construction bears no statistical relationship to the construction

of the patterns that are to be classi® ed. Hence one might test whether the nature of

stimulus construction was the only important factor in these experiments by comparing

preexposure to random chequerboard patterns with no preexposure at all.

Method

Subjects and Apparatus

The subjects were a further 72 graduate and undergraduate students from Cambridge University,

aged between 18 and 30 and paid for their participation. The apparatus was the same as that used in

Experiment 1b.

Stimuli

All stimuli were again 16 3 16 chequerboards, but there were a number of varietiesÐ overlap,

complement, and random. Overlap stimuli were constructed in the same way as the two-category

stimuli in Experiment 1a, in other words, by the addition of random noise to two prototype base

patterns that shared 50% of squares. The actual prototypes were different to those used in Experi-

ments 1a and 1b, but the method of construction was the same. Complement stimuli were created by

the addition of random noise to two base patterns that were the exact negative image of each other

(see Figure 5). One base pattern consisted of 128 black squares and 128 white squares randomly

placed, the other was created by reversing the colour of each square in turn. For both overlap and

complement stimuli, the nature of the random noise was the same as that in Experiment 1a; each

square had an independent 5% chance of having its colour reversed. It seems reasonable to assume

that the `̀ negative image’ ’ relationship between the complement stimuli is not obvious to subjects (or,

at least, far less obvious than it appears in Figure 5). This is because the level of noise added means

that the subjects rarely, if ever, see the base patterns, and because patterns are presented sequentially

rather than simultaneously.
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Each of the random stimuli was simply a 16 3 16 chequerboard formed by the random arrange-

ment of 128 black squares and 128 white squares.

Procedure

The experiment was of a 3 3 2 factorial between-subjects design, the factors being preexposure

(non-preexposed, random preexposed or related preexposed) and stimulus type (overlap or com-

plement). The overlap-preexposed and overlap± non-preexposed conditions were a replication of

the two-category conditions of Experiment 1aÐ they consisted of 15 blocks of two-category free

classi® cation, preceded either by 5 blocks of running recognition (preexposed) or an unrelated

experiment of approximately the same duration (non-preexposed). The complement-preexposed

and complement± non-preexposed conditions were identical to the corresponding overlap condi-

tions except that the complement stimulus type was used in both the running-recognition and

free-classi® cation phases. In the random-preexposed conditions each of the twice-presented sti-

muli in the running-recognition phase was of the random type; the stimuli in the free-classi® ca-

tion phase were either complement or overlap, depending on condition. Conditions in which

preexposure stimuli and free-classi® cation stimuli are created in the same way are referred to as

related-preexposureconditions, to draw the distinction between them and the random-preexposure

conditions.

Results

Although we were predominantly interested in performance on the ® rst block in this

experiment, for the sake of consistency and completeness we applied the same tests of

® nal performance and the same exclusion criteria as those used in previous experiments.

Separate one-sample t tests ( m = 0) were run on subjects’ adjusted CrameÂ r’s phi scores on

the last block of each of the six conditions. In all conditions, scores were signi® cantly

greater than zero, t(11) = 17, 11, and 13, for the non-preexposed, random-preexposed

and related-preexposed overlap-stimulus conditions, and t(11) = 5.8, 11, and 7.4 for the

corresponding complement-stimulus conditions, p < .05 in all cases. A one-sample t test

( m = 0) was performed on each subject’ s 15 scores, p > .05, one-tailed. Subjects whose

scores did not differ signi® cantly from zero were excluded. As some conditions had more

subjects removed on this basis than others, further subjects were excluded until the group

sizes were equal. The subjects selected for exclusion were those with the lowest mean f adj.

Twelve subjects were removed in all (two per conditionÐ the same overall proportion as

that in Experiment 1b) and were not included in any subsequent analysis.

The analysis of the data from this experiment proceeded in two stages. First, ANOVAs

were carried out on the full data set to provide an overall picture. Following these, a

number of speci® c analyses were performed to answer the questions that the experiment

was designed to ask. Central to this second phase is the assumption that a signi® cant main

effect of group or a signi® cant interaction in an overall analysis is not required to validate

the results of a particular, planned, linear contrast. All that is required is that the speci® c

hypothesis that one wishes to test could have been and was formed prior to collecting and

inspecting the data. In the past, psychologists and statisticians have sometimes queried

this assumption, but current thinking is that it is valid. Howell (1992, e.g. p. 338) or

Wilcox (1987) may be consulted for an extended discussion of this point. The speci® c
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tests that we report relate directly to speci® c predictions made prior to running the

experiment and made on the basis of prior experimental evidence.

Overall Analysis

Figure 6 shows the mean f adj scores for each of the 15 blocks in each of the six conditions

in this experiment. Figure 7 presents the number of groups that subjects used in the same

format.

A mixed-design ANOVA with one within- subject factor (block, 15 levels) and two

between-subject factors (stimulus type, 2 levels [overlap or complement] and preexposure

type, 3 levels [non-preexposed, random-preexposed and related-preexposed]) was run on

the subjects’ consistency scores. Two effects were found. First, consistency increased as
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FIG. 6. Mean consistency of subjects’ free-classi® cation judgements (as indexed by adjusted CrameÂ r’s f ) in the

non-preexposed, random-preexposed, and related-preexposed conditions of Experiment 2. The left panel shows

the results for the overlap-stimulus type, the right panel results for the complement-stimulus type.

FIG. 7. Mean number of groups used by subjects in the non-preexposed, random-preexposed, and related-

preexposed conditions of Experiment 2. The left panel shows the results for the overlap-stimulus type, the right

panel results for the complement- stimulus type.



classi® cation proceeded, as indicated by a main effect of block, F(14, 756) = 10, p < .05.

Second, consistency scores were reliably lower in the complement condition than in the

overlap condition, F(1, 54) = 4.4, p < .05. This latter effect is perhaps surprising and will

be considered in detal in a later section. No other main effects or interactions approached

signi® cance, p > .15 in all cases.

An equivalent ANOVAwas peformed on the number of groups subjects used, and two

effects were found. First, the number of groups subjects used fell as classi® cation pro-

ceeded, F(14, 756) = 8.1, p < .05. Second, there was a reliable effect of preexposure on

the number of groups used, f (2, 54)=3.5, p<.0.5. However, a post hoc Tukey test failed to

® nd a reliable difference between any of the three pairs of conditions, p > .05 in all cases.

It is therefore hard to characterize clearly the locus of this unpredicted and unexpected

effect. No other effects in the overall analysis were reliable, p > .1 in all cases.

Speci® c Tests

The Effect of Random Preexposure. There are two related questions. First, does

random preexposure produce reliably different consistency scores to no preexposure?

The answer given by a planned contrast of the two appropriate group means is no,

F(1, 54) = 0.82, p > .3. Second, do random preexposure and no preexposure produce

reliably different number of groups in subjects’ classi® cations? The answer, again given by

a planned contrast of the two group means, is no, F(1, 54) = 0.02, p > .5.

The Effect of Preexposure on Consistency Scores in Block 1 of Free Classi® cation. There

were three speci® c questions. First, do consistency scores in Block 1 of the related-

preexposed± overlap condition differ reliably from consistency scores in Block 1 of the

non-preexposed± overlap condition? The answer, given by a planned contrast between the

two appropriate Block 1 group means, is yes, F(1, 54) = 4.1, p < .05. Second, do

consistency scores in Block 1 of the related-preexposed and non-preexposed comple-

ment-stimulus conditions reliably differ? The answer is no, F(1, 54) = 0.64, p > .4. Third,

is there a reliable difference between these two differences? This can be answered by an

appropriate planned linear contrast between the four appropriate Block 1 group means,

and the answer is yes, F(1, 54) = 4.0, p = .05.

Discussion

Preexposure was shown to increase the consistency of subjects’ judgements when the two

underlying prototypes were, on a square-by-square basis, 50% similar but not when they

were 0% similar on the same basis. The conclusion we wish to draw is that this primitive

similarity measure is a useful one and that the effect of preexposure on consistency is

modulated by the similarity of the underlying prototypes on this measure. Speci® cally, a

bene® cial effect of preexposure is seen only if the prototypes are fairly similar.

The validity of this conclusion clearly depends on the validity of the similarity mea-

sure. It would seem, intuitively, that the perceived similarity of two visual patterns is

determined by more than the point-by- point agreement of their intensities. The presence
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of common edges and a number of other relational and con® gural properties are probably

also important and, indeed, we believe this to be the case. However, for our purposes it is

not crucial that the number of squares shared should provide a complete description of

how similar two chequerboard patterns areÐ it must simply provide a good ® rst approx-

imation to this. Although it seems unlikely that squares shared is a perfect index of the

similarity of two chequerboards, it does seem likely that, as a general rule, the fewer

squares two patterns share the less similar they will appear.

Some evidence for the latter point is provided in an experiment by McLaren, Bennett,

Guttman-Nahir, Kim, and Mackintosh (1995, experiment 3). They investigated the per-

ceived similarity of a varied set of 16 3 16 chequerboard patterns created by the addition

of random noise to two prototypes that shared approximately 56% of squares. Similarity

was indexed by the mistakes made in an identi® cation-learning task. A one-dimensional

scaling solution of the similarity matrix accounted for 90% of the variance, and the rank

ordering of stimuli on that dimension correlated very highly, rs = .94, with the rank

ordering of stimuli on the basis of the number of squares they shared. In other words,

squares shared appeared to be a reasonable estimate of similarity. Further details of this

standard method of assessing psychological similarity space may be found in Nosofsky

(1986) or Shepard (1987).

Overall, it seems that our initial interpretation was basically valid. To reiterate, the

effect of preexposure on the consistency of free-classi® cation judgements is modulated by

the similarity of the underlying prototypes, and a bene® cial effect is seen only if the

prototypes are suf® ciently similar. This provides further evidence that the effect of pre-

exposure is highly dependent on the exact nature of the stimulus construction.

Additional converging evidence is provided by the other major result of this experi-

ment. In terms of its effect on consistency, preexposure to chequerboard patterns that are

a random arrangement of an equal number of black and white squares is not reliably

different to the absence of preexposure. This is an important result because in many ways

these random chequerboards are very like the patterns that subjects will later classify.

Indeed, any random pattern can be thought of as a member of some chequerboard

category. The difference between related and random preexposure is that in related

preexposure all chequerboards are created from a small set of base patterns, which are

the same as the set used to create the chequerboards used in free classi® cation. Hence, our

result suggests that it is the relationship between the set of patterns presented in pre-

exposure and the set of patterns presented in free classi® cation that is of primary impor-

tance in determining the effect of preexposure. If other factors, such as general familiarity

with chequerboard patterns or with the task requirements, were important in determining

the effect of preexposure, then one would expect that the effect of preexposure to random

chequerboard patterns would be different to the effect of no preexposure at all. This

experiment fails to provide any reliable evidence for this position.

There are two further novel results in this experiment. First, the type of preexposure

receivedÐ related, random, or noneÐ reliably affects the number of groups that subjects

use. The available data do not allow us to decide which types of preexposure are reliably

different (none of the post hoc pairwise comparisons was signi® cant). Nevertheless, the

result provides further evidence that preexposure can affect the classi® cation system that

a subject decides to adopt. Second, subjects in the overlap conditions produce more
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consistent classi® cations than do subjects in the complement conditions. An explanation

of this result will be given towards the end of the ® nal section.

GENERAL DISCUSSION

This paper contributes three novel empirical ® ndings concerning the effects of stimulus

preexposure on human subjects. First, Experiment 1 establishes that the effects of pre-

exposure on category learning depend on the stimulus structure of the categories in

question; McLaren’s (1997) analogous result was for within-category discriminations

rather than the between-category discriminations considered here. Second, Experiment

1b is, as far as we are aware, the ® rst demonstration of a retardation in learning as a

consequence of simple preexposure in adult human subjects. Other demonstrations of this

type of effect have relied on incidental or masked preexposure to generate retarded

learning with adult humans. Third, Experiment 2 provides further support for the con-

tention that the effects of preexposure are contingent on stimulus structure, and it is the

® rst experimental demonstration in humans that stimulus similarity is a crucial factor in

determining the consequences of stimulus preexposure.

Taken together, these ® ndings rule out one class of explanation of the type of expo-

sure-learning phenomena reported here. One might attempt to argue that the effects of

exposure learning were due to subjects automatically paying more or less attention to

familiar stimuli. Such an explanation would be in the spirit of conditioned attention

theory (Lubow, 1989) or of certain accounts of negative-priming phenomena (T ipper,

1985). The fact that the precise nature of the stimulus structure of otherwise similar

patterns can, by itself, determine whether familiarization leads to speeded or retarded

learning makes such an account hard to sustain. The crux of the problem is that attention

is assumed to be directed towards or away from stimuli as unitary objects. In the pre-

exposed conditions of all our experiments, subjects have been familiarized, under the

same running- recognition procedure in each case, with objects that are in some way

similar to those that they later have to classify. However, no uniform bene® cial or detri-

mental effect is seen. It seems dif® cult to explain this result in terms of shifting attention

towards or away from stimuli as unitary wholes.

The results can be explained, however, by the extension of a model originally designed

to explain perceptual learning and latent inhibition in rats and pigeons proposed by

McLaren et al. (1989). It is important to emphasize that the theoretical discussion that

follows is not a post hoc speculative account. The predictions of the McLaren et al.Ð

hereafter MKMÐ model derive from a simple application of it to the new data in this

paper, and the assumptions underlying this application are the same as those previously

used to explain other human and animal data.

For a precise mathematical statement of the MKM model, the reader is invited to

consult the original paper (McLaren et al. 1989). However, all that is required to under-

stand the predictions of the model for the current experiments is an understanding of the

basic underlying principles. Of central importance is the principle that all stimuli, how-

ever simple, are represented by a number of features or attributesÐ hereafter elements. As

a result of repeated presentation and reliable co-occurrence, associations may form

between these elements. The formation of associations is assumed to be determined by
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a simple error-correcting ruleÐ the delta rule (McClelland & Rumelhart, 1985). This

algorithm is similar in spirit to that used in the Rescorla-Wagner theory of Pavlovian

conditioning (Rescorla & Wagner, 1972).

Overlying this associative learning system is a mechanism (the modulator) that gen-

erates changes in the salience (associability) of elements. As the network of associations

becomes able to predict the occurrence and non-occurrence of an element (i.e. as the

error term in the learning rule reduces) the modulator reduces the salience of that

element and hence the element is less able to enter into new associations.

For our purposes, this is the key feature of the model. In situations where elements

reliably predict each other, repeated exposure to those elements leads to a reduction in

their salience and hence a reduction in the rate at which new associations can form.

Crucially, preexposure often leads to differential changes in salience of different elements.

The extent to which the salience of an element changes is, at limit, entirely determined by

the extent to which it is predicted by other elements. However, the overall probability

with which an element occurs also generally affects the salience of its representationsÐ

high-probability elements occur more frequently, and hence associations to their repre-

sentations form more quickly than do associations to the representations of low-prob-

ability elements. Previous discussions of the application of the model (e.g. Mackintosh et

al., 1991; McLaren, 1997; McLaren et al., 1989, 1994) have concentrated on the relative

frequency of occurrence of elements, but this does not alter the fact that the model’ s

predictions are determined by the overall frequency of an element’s occurrence as well as

by the contingency between it and other elements.

In applying the MKM model to the current data, we assume that the prototypes of our

chequerboard patterns are composed of a number of elements. Some of these elements are

unique to a particular prototype, whereas some are shared with one or more of the other

prototypes. When examples of catgories are produced from prototypes by the addition of

random noise, as they are in Experiments 1a and 2, we assume that these examples are

composed mainly of elements that make up the prototype but that the examples also

contain some non-prototypical or `̀ noise’ ’ elements. These assumptions are exactly the

same as those made in the explanation of the results in McLaren (1997) and McLaren et

al. (1994) and follow logically from the initial application of the model to single stimuli

and pairs of stimuli (e.g. Mackintosh et al., 1991; McLaren et al., 1989). The question of

how to apply the model to the form of stimulus construction used in Experiment 1b will

be considered later.

An important aspect of these assumptions about stimulus representation in Experi-

ments 1a and 2 is that the model is able to learn something about the categorical nature of

the stimuli without actually categorizing them (either with or without the help of exter-

nally provided labels). The presence of single elements can be predictive of the experi-

menter-de® ned category of the stimulus that contains them, in the sense that the two

pieces of information are positively correlated. The model cannot learn the predictive

relationship directly when no category label is provided, but it can learn which subsets of

elements reliably co-occur, which do not, and which predict the absence of others.

Because category examples are composed of a set of reliably co-occurring elements, a

single element that is diagnostic of category membership is more predictable by other

elements than one whose occurrence is totally independent of the de® ned category
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structure (assuming that overall probability of occurrence is held constant). Taking this

one step further, if an element is negatively correlated with a particular category then if

for some reason it does occur in that category it will be in circumstances where it is

speci® cally predicted not to be present. In other words, the model is sensitive to the

correlation of elements with category membership even though category-membership

information is never speci® cally provided. Again these properties of the model arise

from a standard application of it to the current experiments.

To summarize, the salience of the representation of an element changes with exposure.

The salience of a representation is the rate at which associations from it to other repre-

sentations are learned. Salience is affected by both the frequency of occurrence of an

element in conjunction with other elements and the extent to which occurrences are

predicted by other elements. Higher frequency of occurrence leads to lower salience, as

does higher predictability. Due to the categorical nature of the stimuli used in these

experiments, for any given frequency of occurrence elements correlated with category

membership are more predictable than those uncorrelated with category membership. In

turn, elements negatively correlated with category membership are less predicted to occur

in that category than uncorrelated elements.

Figure 8a illustrates schematically the effect of these co-determinants of salience in a

two-category situation in our experiments. A small number of discrete points are plotted

to keep the ® gure simple but, of course, probability of occurrence and correlation with

category membership could potentially take any value within the ranges shown. Note that

not all lines are of equal length; an element with no correlation to the presented category

may have any frequency of occurrence, but an element perfectly correlated with category

membership must, in the two-category conditions of our experiments, occur 50% of the

time. Figure 8b shows how the common and unique elements Venn diagram used in the

original presentation of the MKM model (McLaren et al., 1989) may be related to Figure

8a in a simpli® ed situation where all elements are sampled. This Venn diagram illustrates

a simple case where two stimuli (the two circles of the Venn diagram) are preexposed. The

elements that the two stimuli share are common elements; they have a probability of

occurrence of one and a correlation of zero with the occurrence of a particular stimulus.

Elements exclusive to one stimulus are unique elements. In a two-stimulus situation, the

occurrence of unique elements is perfectly correlated with the occurrence of the stimulus

of which they are a part, and their overall probability of occurrence is .5 if the two stimuli

are presented equally often. In the more complex situations of the current experiments,

correlation with category membership and overall probability of occurrence can take

values other than 0, .5, and 1. Figure 8a shows the full range for the two-category

conditions.

We are now in a position to explain the effects of preexposure on the consistency

judgements in Experiments 1a and 2. The assumption made is that free classi® cation

proceeds by the formation of associations from elements in the stimulus representation to

category- level representations and that these associations form faster to more salient

elements. The exact process by which this occurs must, at least in this current paper,

remain unspeci® ed. A fully adequate connectionist model of free classi® cation is a worthy

and substantial project in its own right, but not one that is undertaken here. However, if

one accepts our basic conjecture about free classi® cation, what predictions can be made?
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The following discussion will concentrate on the two-category case for the sake of both

brevity and clarity.

In Experiment 1a, two types of element predominate. Ignoring noise for the moment,

these are the unique elements, which are perfectly correlated with category membership

and occur 50% of the time, and the common elements, which occur 100% of the time but

are totally uncorrelated with category membership. As previously discussed, and as sum-

marized in Figure 8, the unique elements are higher in salience than the common ele-

ments as a result of preexposure.

This may be made clearer by the following simpli® ed two-stimulus example. Imagine a

stimulus (stimulus A) with four elements. Two of these elements, a and b, are unique to

stimulus A. The other two elements, c and d, are common to both stimulus A and a

second stimulus (stimulus B). When stimulus A is ® rst presented, all four elements occur

together and are equally associated with each other. However, the common elements c and

d occur together again when stimulus B is presented, so that their association is strength-

ened further. Over a series of preexposure trials, the common elements become more

strongly associated than the unique elements, leading to lower salience for these common

elements.

Thus we assume that, after preexposure, associations form preferentially to the unique

elements. In the absence of preexposure, the salience of common and unique elements are

initially the same. As the unique elements are the ones that determine the experimenter-

de® ned category membership and are therefore the ones to which we want subjects to
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form associations, the consequence of preexposure is higher consistency of free-classi® -

cation judgements.

If we now allow for noise, it has little impact on the salience of unique and common

elements (as there is only 5% noise in any case). It can be seen from Figure 8a that noise

elements are high in salience because their overall probability of occurrence is low and

their correlation with category membership is either zero (noise added to common ele-

ments) or close to 2 1 (noise added to unique elements). The overall impact of noise

elements is small, however, as they are very much in the minority. Hence the model

predicts that preexposure is bene® cial in this situation. The explanation of the effect of

preexposure on consistency in Experiment 1a is essentially equivalent to the `̀ differential

latent inhibition of common and unique elements’ ’ account of perceptual learning in rats

presented in McLaren et al. (1989).

The model also accounts for the result in Experiment 2 that the effect of preexposure

on consistency is modulated by the similarity of the underlying prototypes. If the two

prototypes are less similar, the number of common elements in the examples produced

from them are fewer. As the difference in salience between common and unique elements

is assumed to underly the basic preexposure effect of Experiment 1a, reducing the

number of common elements should reduce the bene® cial effect of preexposure. In the

extreme case, if two stimuli share no common elements then preexposure simply makes all

elements lower in salience, resulting in a detrimental effect of preexposure. To explain the

similarity-dependence results of Experiment 2, we must simply assume that our manip-

ulation was effective in reducing the proportion of common elements but did not elim-

inate them entirely. Both Mackintosh et al. (1991) and Chamizo and Mackintosh (1989)

explain their analogous results by a similar application of the MKM model. Although in

our experiment the pair of base patterns used to construct examples in the complement

conditions were entirely dissimilar on a square-by-square basis, it seems unlikely that the

similarity of two chequerboard patterns is determined solely on this basis. Hence it may

be reasonable to assume that the base patterns still share some elements in common.

There are other results in Experiment 1a and 2 to be explained, but ® rst we need an

explanation of the most striking result in this paperÐ the fact that the preexposure has a

detrimental effect on consistency in Experiment 1b. The MKM model provides an

explanation which follows naturally from two assumptions about stimulus representation

that we have already made. First, the number of matching squares in corresponding

positions is a good ® rst approximation to the similarity of two chequerboard patterns.

Second, the similarity of two patterns increases with the number of elements that their

representations share in common. If these arguments are valid then it seems likely that a

signi® cant proportion of the set of elements representing a chequerboard pattern are

those that signal the colour of a square in a speci® c position on that chequerboard. We

will assume that these single square elements respond to the presence of a particular

shadeÐ that is, they are sensitive either to black or to white but not to both.

It is the changes in salience that these single-square elements undergo that are taken to

drive the detrimental effect of preexposure seen in Experiment 1b. We have already

demonstrated that in the MKM model the relative salience of elements as a result of

preexposure is that shown in Figure 8. Hence, to extract the predictions of the model for

Experiment 1b, one needs to characterize the single- square elements in terms of their
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correlation with category membership and their overall probability of occurrence. This

can be done by the application of the assumptions about stimulus representation that we

have already made, as is demonstrated below.

Overall probability of occurrence is considered ® rst. In Experiment 1b, all examples

were constructed by the random rearrangement of the rows of a base pattern. Therefore,

the probability with which a single-square element occurs is determined by the sum of the

total number of black squares and the total number of white squares in the appropriate

columns of the base patterns. A speci® c, two-category example may make this clearer.

Consider an element that represents the presence of black in, for example, the third

square from the top in the fourth column from the left. The overall probability of this

element being activated when a chequerboard pattern is presented is the number of black

squares in column 4 of base pattern one, plus the number of black squares in column 4 of

base pattern two, all divided by the total number of squaresÐ that is, 32 (2 3 16, 16 being

the number of rows in our chequerboard patterns).

The master pattern from which the base patterns are constructed is made up of an

equal number of black and white squares. Hence, the most likely probability of occurrence

for any single-square element is .5. Of course, other probabilities of occurrence are

possible, although less likely. The likelihood of all probabilities of occurrence can be

determined exactly from a binomial distribution, which for large N approaches a normal

distribution. Therefore the overall probability of occurrence for single-square elements

can be characterized by as an approximately normal (i.e. Gaussian) distribution centered

on .5.

The correlation between the occurrence of a single- square element and the occurrence

of an example from a particular experimenter-de® ned category is also determined by the

number of black and white squares in columns of the base patterns. However, it is the

difference between the number of squares of a particular colour in the two base patterns

(rather than the sum) that determines correlation. Again, a couple of examples may make

this clearer. For simplicity, the overall probability of occurrence is held constant at .5, and

only elements representing the presence of black in particular squares are considered.

First, consider two base patterns (base pattern one and base pattern two). Both have 8

black squares in the ® fth column from the right. An element representing the presence of

black in, say, row 10 of that column will occur on half the presentations of base pattern

one. However, it will also occur on half the presentations of base pattern two. Hence the

element’ s correlation with the experimenter-de® ned category structure is zero.

Now consider a second situation. Base pattern one has 16 black squares in the ® fth

column. Base pattern two has no black squares in this column. Overall, the element will

occur 50% of the timeÐ the same as in the previous example. However, the element will

only occur if an example from base pattern one is presented. It will never occur if an

example from base pattern two is presented. Hence the occurrence of the element is

perfectly correlated with category membership.

The master pattern from which the base patterns are composed has an equal number

of black and white squares. Therefore, for any given column, the occurrence of 8 black

squares in base pattern one and 8 black squares in base pattern two is the single most

likely outcome. The occurrence of sixteen black squares in one pattern and zero in the

other is extremely unlikely. As before, the exact probabilities can be derived from
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binomial distributions. Binomial distributions approximate to a normal distribution for

large N. Hence, the correlation of the occurrence of single- square elements with the

experimenter-de® ned category can be characterized by a probability distribution centred

on zero and approximately Gaussian in shape.

To summarize, single- square elements in Experiment 1b can be characterized as

followsÐ their overall probability of occurrence has a distribution with a mean of .5

and their correlation with category membership has a distribution with a mean of

zero. As in Experiment 1a, the mean salience of elements is predicted to be lower

after preexposure. The model predicts increased consistency as a result of preexposure

in Experiment 1a, even though mean salience is lower, because salience changes

differentially for diagnostic and non-diagnostic elements. Due to the nature of stimu-

lus construction in Experiment 1a, the non-diagnostic (common) elements turn out to

have a lower salience than the diagnostic (unique) elements. This leads to increases

consistency because the diagnostic elements are preferentially associated to category

representations.

The situation is very different in Experiment 1b. Whereas in Experiment 1a, relative

frequency was the dominant factor in determining element salience, in Experiment 1b

this is no longer the case. In Experiment 1b, it is correlation with category membership

that plays the dominant role, because stimulus construction is such that element fre-

quency is no longer confounded with category membership. In Experiment 1a, diagnostic

elements occurred more frequently than non-diagnostic ones. However, in Experiment 1b

if an element has a high correlation with a category its probability of occurrence is, on

average, .5. If it has zero correlation, the mean probability of occurrence is still .5. If it is

negatively correlated, the mean probability of occurrence is still .5. Correlation is not

confounded with frequency in this experiment.

As noted earlier, elements that are correlated with category membership co-occur more

often with other elements in that category than elements that are not positively correlated;

this increased co-occurrence leads to stronger interassociations and hence lower salience.

Hence, for any overall probability of occurrence, elements positively correlated with

category membership are lower in salience than elements with zero correlation. In

turn, the salience of elements with zero correlation is lower than the salience of those

elements that have occurred in a category of which they are not generally predictive (i.e.

negative correlation). This means that, as a result of preexposure, associations tend to

form to the wrong elements ® rst, the uninformative ones second, and the right ones

third and last. In the absence of preexposure, associations form at the same rate to all

three. Therefore, preexposure reduces the consistency of subjects’ free classi® cations in

this situation. It is worth emphasizing that, although the discussion leading up to this

conclusion has been lengthy, it did not require any more assumptions than had already

been made and supported.

The lack of any signi® cant effect of random preexposure in Experiment 2 is also

simply explained by the MKM model. Under random preexposure, the occurrence of

any single- square element is independent of any other. Hence, these elements are unable

to predict each other. (Although associations are formed on those occasions when ele-

ments occur together by chance, with repeated random presentations the MKM model

predicts that these associations will asymptote at zero.) The result is no change in salience,
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so that if the behaviour of single- square elements is driving the effects of preexposure,

then one would expect no signi® cant effect under random preexposure.

The fact that subjects in the overlap conditions of Experiment 2 are more consistent

overall than subjects in the complement conditions is more puzzling. We have argued that

the stimuli in the overlap conditions have more elements in common than those in the

complement conditions. Most learning theories would predict the opposite resultÐ that

the less similar two stimuli are the easier they are to discriminate. We are unsure how to

explain this result at present. As we have argued before, our measure of similarity

(squares shared) is almost certainly incomplete. Clearly, there is some relationship

between a chequerboard and its negative image, which goes beyond the fact that they

share no elements in common on a square-by-square basis. Equally, this relationship is a

dif® cult one to capture in representational termsÐ it seems different, more abstract, than

simple feature overlap. It may be that this relationship is, in some way, responsible for

overall poorer consistency in the complement conditions. However, as we have no further

evidence to bring to bear at this point, further speculation seems idle.

Despite such unanswered questions, the extent to which a theory developed to explain

latent inhibition and perceptual learning in animals transfers to the human domain is still

one of the most remarkable aspects of our results (with the proviso that the results for

human subjects are consistent with purely differential salience change). In particular, the

ability of the theory to explain when faster and slower learning should occur as a result of

preexposure is impressive. It suggests that there may be more scope for integrating

theories from human and comparative psychology.

The above discussion has been limited to the consistency of free-classi® cation judge-

ments, but the results of the experiments reported are not limited in this way. They also

demonstrate that preexposure can change the type of classi® cations that subjects use in

stimulus- speci® c ways. In Experiment 1a, the results were not clear cut, but inspection of

the means suggests that preexposure reduced the number of groups subjects used in a

four-category problem but increased it in a two-category problem. In Experiment 1b,

preexposure decreased groups used, irrespective of problem type, and there was some

evidence this was a reliably different pattern of results to that seen in Experiment 1a. In

Experiment 2, a signi® cant effect of preexposure on groups used was found, but again its

exact nature was dif® cult to characterize clearly. Intriguingly, inspection of the means in

this case suggests that the biggest effect was in the preexposure of complement stimuli,

where no reliable effect on consistency was seen. It may come as no surprise that we

believe that some of the effects of preexposure on the number of groups used are

explicable by changes in elemental salience. However, we had no clear predictions con-

cerning speci® c changes in groups used prior to running these experiments and have, as

yet, performed no empirical tests of the hypotheses we now have. It therefore seems

inappropriate to expand on them here.

Although such theoretical and empirical development is beyond the scope of the

current paper, it certainly needs to be made. In the current experiments we have shown

that the phenomena of perceptual learning and category formation are intimately and

intricately related. However, many otherwise successful models of categorization do not

explain the type of category formation seen in our experiments. Examples include the

generalized context model (Nosofsky, 1986), RULEX (Nosofsky, Palmeri, & McKinley,
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1994), the array model (Estes, 1994), back-propagation networks (Rumelhart, Hinton, &

Williams, 1986) and ALCOVE (Kruschke, 1992). These and many other models assume

that categorization is based on item-speci® c feedback. Such feedback is not available in

our experiments, yet subjects form categories consistent with the underlying, experimen-

ter-de® ned structure. Neither is the theoretical account we present immune from such

criticism. Although we have allowed that associations can form from stimulus-level repre-

sentations to category-level representations without item-speci® c feedback, we have not

provided an account of how this might happen (other than that the associations will form

more rapidly to elements with higher salience).

However, the class of models discussed above would also have dif® culty in capturing

the representational development that simple exposure seems to produce. The general-

ized context model bases its predictions about categorization on the confusability of

stimulus pairs derived from, for example, an identi® cation experiment. The model could

be applied to the effects of preexposure on categorization by running two identi® cation

experiments, one with an initial preexposure phase and one without. However, this would

not provide a process explanation of perceptual learning, which is the goal of our inves-

tigations. ALCOVE has a mechanism by which attention to speci® c dimensions is mod-

i® ed, but this mechanism is dependent upon the network being presented with a category

label. Additional processes would have to be speci® ed if this model is to predict that

simple exposure can affect later explicit categorization. Estes’ array model has a para-

meter, or sometimes parameters, which express the confusability of stimulus features. One

could reasonably postulate that preexposure changes their value. However this is, once

again, some way from specifying a process by which it might occur. The remaining

models mentioned so far appear to have no facility to deal with the effects of simple

exposure.

In other words, these models provide a theoretical account of categorization but do not

address themselves to category formation or exposure learning. Our model explains the

exposure learning seen in our experiments, but does not specify a speci® c process for

category formation in the absence of feedback. There are theories that speci® cally address

category formation, but some (e.g. Ahn & Medin, 1992; Michalski & Stepp, 1983) cannot

be applied to our data because they work on the premise that the entire to-be-classi® ed

stimulus set is fully accessible at the point of category formation. This is clearly not the

case with our sequential classi® cation procedures.

Two models that can be applied to our data are Anderson’ s rational model (Anderson,

1990, 1991) and COBWEB (Fisher, 1987). Both of these models work on the assumption

that we form categories in such a way as to maximize the extent to which they predict

properties of the individual stimuli. However, neither model includes any method by

which stimulus representations can change as a result of simple exposure, a process

that we have argued is central to our understanding of the results of the current experi-

ments. The applications of standard, unsupervized connectionist models (e.g. Rumelhart

& Zipser, 1986) to the current data suffers from a related problem. For such models, the

preexposure and free-classi® cation phases are not fundamentally different; preexposure

simply provides more examples to classify. Hence preexposure should generally be ben-

e® cial when the free-classi® ed and preexposed stimuli are related. Experiment 1 shows

that sometimes related preexposure can be detrimental.
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There are, of course, theories speci® cally designed to explain perceptual learning

phenomena. The second author has written previously (McLaren et al., 1994) on the

relationship between the theory of perceptual learning set out here, and the work of E.J.

Gibson (1969), presenting some signi® cant problems for Gibson’ s account. Hall’ s review

of perceptual learning (Hall, 1991) is broadly in support of the main theoretical constructs

of the McLaren et al. (1989) model (although there is some debate over the details). Also

relevant is Goldstone’ s recently published work on the effect of categorization on per-

ceptual discrimination (Goldstone, 1994), which, in terms of theory, is a development of

the concepts of acquired distinctiveness (Miller, 1948) and acquired equivalence (Miller &

Dollard, 1941). Acquired distinctiveness is the increased discriminability of two stimuli

which results from their being given different labels; acquired equivalence is the

decreased discriminability resulting from their being given the same label. These concepts

are not in con¯ ict with the general argument made here, and they are perhaps best

considered as additional processes that may act when subjects begin to attach labels to

stimuli. Although the labels are generally provided by the experimenter on an item-by-

item basis, there seems no reason in principle why labels that subjects create themselves

should not also produce acquired distinctiveness or acquired equivalence effects. Whether

such effects have an important in¯ uence on stimulus representation as free classi® cation

proceeds is an open question, and one not readily answerable from the data presented in

this paper.

In summary, preexposure does not simply ® ne-tune the classi® cations that would have

been formed anywayÐ it can dynamically alter the actual classi® cations formed. If we are

to understand how a learner selects the categories to be formed from among all those that

could be formed, the effect that perceptual learning has on this process must also be

understood. Many have argued that categorization is central to cognition. If this is true,

perceptual learning deserves an equally lofty status.
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Apprentissage perceptuel et classi® cation libre

Deux expeÂ riences sont reporteÂ es sur les effets de preÂ -exposition sur la discrimination dans

une taÃ che de classi® cation libre. Dans cette taÃ che, les sujets doivent grouper des stimuli d’une

facË on qui semble raisonable. L’espeÂ rience 1 deÂ montre que l’effet de preÂ -exposition deÂ pend de

la structure des stimuli. L’expeÂ rience 1b est la premieÁ re deÂ monstration d’un apprentissage

retardeÂ duÃ aÁ une simple preÂ -exposition chez les sujets humains adultes (les deÂ monstrations

preÂ ceÂ dentes ont utiliseÂ une preÂ -exposition accidentelle ou masqueÂ e). L’expeÂ rience 2 supporte

les conclusions de l’expeÂ rience 1 et ajoute une deÂ monstration de l’ importance cruciale de la

similariteÂ des stimuli. Ensemble ces expeÂ riences eÂ liminent des explications des phenomeÁ nes

observeÂ s dans cette eÂ tude qui sont baseÂ es sur l’attention. Les expeÂ riences offrent de

l’ information nouvelle quant aux effets de la preÂ -exposition. La preÂ -exposition peut

changer les classi® cations formeÂ es par les sujets en plus de changer la vitesse aÁ laquelle

elles sont construites. Les implications de ces donneÂ es pour les theÂ ories de la formation

des cateÂ gories et l’apprentissage sont consideÁ reÂ es.
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Aprendizaje perceptivo y clasi® cacioÂ n libre

Se presentan dos experimentos que investigan los efectos de la preexposicioÂ n del estõÂ mulo en

la actuacioÂ n discriminativa en una tarea de clasi® cacioÂ n libre, usando humanos adultos como

sujetos. En la clasi® cacioÂ n libre a los sujetos se les pide que agrupen estõÂ mulos de alguna

manera que a ellos les parezca razonable o sensata. El Experimento 1 muestra que el efecto de

preexposicioÂ n depende de la estructura del estõÂ mulo. El Experimento 1b es la primera

demostracioÂ n de un retraso en el aprendizaje a consecuencia de la simple preexposicioÂ n en

sujetos humanos adultos (las demostraciones previas han dependido de preexposicioÂ n

incidental o enmascarada). El Experimento 2 aporta maÂ s apoyo a las conclusiones del

Experimento 1 y las amplia con la demostracioÂ n de que la similitud del estõÂ mulo es un

factor crucial. ConsideraÂ ndolos en conjunto, estos experimentos excluyen una clase de

explicaciones basadas en la atencioÂ n del fenoÂ meno del que aquõÂ se informa. Los

experimentos tambieÂ n proporcionan informacioÂ n nueva sobre los efectos de la

preexposicioÂ n. La preexposicioÂ n puede cambiar la forma actual de las clasi® caciones de los

sujetos ademaÂ s de alterar la razoÂ n a la que se forman. Se tienen en cuenta las implicaciones de

estos resultados para las teorõÂ as actuales de la formacioÂ n de categorias y el aprendizaje

perceptivo.
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