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Although it is currently popular to model human associative learning using connectionist

networks, the mechanism by which their output activations are converted to probabilities of

response has received relatively little attention. Several possible models of this decision

process are considered here, including a simple ratio rule, a simple difference rule, their

exponential versions, and a winner-take-all network. Two categorization experiments that

attempt to dissociate these models are reported. Analogues of the experiments were presented

to a single-layer, feed-forward, delta-rule network. Only the exponential ratio rule and the

winner-take-all architecture, acting on the networks’ output activations that corresponded to

responses available on test, were capable of fully predicting the mean response results. In

addition, unlike the exponential ratio rule, the winner-take-all model has the potential to

predict latencies. Further studies will be required to determine whether latencies produced

under more stringent conditions conform to the model’s predictions.

As learning theorists we attempt to explain how circumstances govern behaviour. Often

our explanation is couched in the form of some algorithm that, in the course of experi-

ence, mediates the relationship between stimulus input and response output. Many

experiments have been performed to decide between alternative algorithms, with the

aim of specifying the processes by which learning takes place. We would not wish to

argue that such efforts are misplaced, but there is a danger inherent in pursuing such a

strategy. If the differences observed in an experiment are not attributable to learning but,

rather, stem from the operation of decision processes that operate on what has been learnt

so as to convert this information into a response, then trying to account for these differ-

ences via any learning algorithm is a mistake. To avoid this type of misattribution we need

to characterize the decision mechanisms suf® ciently well that they can be taken into

account in the interpretation of our results. T hat is the aim of this paper.

As an illustration of the potential pitfalls that await the unwary consider the results of

Wills and McLaren (1997). In this paper the authors consider the difference between the

generalization gradients found after discriminative and non-discriminative training on a
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categorization task with human subjects. T he result is that the post-training gradients are

signi® cantly steeper in the discriminative case, an effect that parallels that found in the

animal learning literature. T he explanation offered for this effect in pigeons is that

discriminative training allows the features relevant to the discrimination to overshadow

(incidental) stimuli common to S+ and S 2 , so lessening generalization between them and

giving a steeper gradient, a type of relative validity effect (Wagner, Logan, Haberlandt, &

Price, 1968). Wills and McLaren were able to show that this was not the explanation for

the effect in their experiments, however, and that it could be explained as a consequence

of the interplay between decision mechanism and task requirements. Put simply, in the

discriminative case some comparison is made of alternatives, whereas in the non-

discriminative case comparison is made with respect to some criterion. Wills & McLaren

were able to show that this followed from a connectionist model of the decision process

that did not rely on the overshadowing mechanism.

T here is no reason to suppose that there could not be a decision mechanism of this

kind in the pigeon, in which case attribution of the discriminative/ non-discriminative

gradient difference to an overshadowing mechanism in all circumstances may be unwar-

ranted. We simply don’t know. T he reason for this is that the necessary experiments

deconfounding the effects of decision processes and overshadowing have not been done.

T his is symptomatic of a general tendency to neglect the whole issue of response selection

by comparison with the study of learning itself. We model learning but stop short of

specifying how it results in action.

In general, if we follow the connectionist approach to modelling, then a decision

process that converts output activations to probabilities of response is required. T his

can take the form of a function known as a decision rule, which in many cases is implicit

in the modelling rather than an explicit component of the model. Here we consider four

candidate functions that can be used to model the decision process.

T he simple ratio rule is formally stated as:

P(a) = Aa/ S An 1

where P(a) is the probability of responding ``a’ ’ , Ax is the activation of the appropriate

category unit(s), and n is the number of categories being considered. T his rule is pre-

ferred by Shanks (e.g. Shanks, 1991) and Estes (1950). It corresponds to the idea that the

probability of selecting one of a number of possible choices depends on its ``weight’ ’

compared to those alternatives. As such, it has something in common with the notion of

matching response probabilities to associative strengths.

A variant of this is the exponential ratio rule, which is expressed thus:

P(a) = ekAa/ S ekAn 2

where k is a free parameter. T he inclusion of the exponential transform allows the

function to be non-linear and constrains the terms to positive values. Authors who employ

this rule include McClelland and Rumelhart (1981, 1985), McClelland and Elman (1986),

and Gluck and Bower (1988). T he popularity of ratio rules probably stems from Luce’s

Choice Axiom (Luce, 1963) and the evidence that is consistent with it (e.g. Bradley, 1954;
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Hopkins, 1954). T his exponential variant is more common in modelling human decision

processes.

An alternative class of mechanism considered here is exempli® ed by the simple dif-

ference rule:

P(a) = [k(Aa 2 Ab) + 1] / 2 3

where just two categories, a and b, are being considered. McLaren, Bennett, Guttman-

Nahir, Kim, & Mackintosh (1995) discuss a rule of this type. Modi® cation of this gives the

exponential difference rule:

P(a) = (ekAa 2 ekAb + ek)/ e2k
4

In both cases the numerical constants serve to ® t the functions to an appropriate range.

T he application of difference rules to situations involving more than two categories is

ambiguous. However, one posibility is to compare the two categories with the most active

units. Difference rules have been thought to be plausible candidates because under certain

circumstances they might naturally emerge from a competitive response stage. In such a

process the probability of a particular response would depend upon the advantage (i.e.

difference) in activation of its unit over the other units. T his type of rule is implicit in a

great deal of work modelling learning. Whenever an author points out that the associative

strength for one stimulus exceeds that for another by more than for a comparable set of

stimuli in the experiment, it is implied that it is the difference in associative strengths

rather than their relative weightings that controls performance.

T he possibility of modelling the decision process using a connectionist instantiation of

a winner-take-all response stage, similar to that employed by Wills and McLaren (1997),

is also examined in this paper. A model of this type has the advantages of general

applicability and being able to produce predictions concerning both latency and prob-

ability of response. However, a detailed description of the network simulations will be left

until later.

A preliminary analysis of the behaviour of the decision rules indicated that for a case

involving just two category units, a halving of both their activations did not alter the

probabilities of response predicted by the simple ratio rule, but did affect those produced

by the other rules. T hese differential predictions provided the basis for the ® rst experiment.

EXPERIMENT 1
T he stimuli employed comprised a 4 3 3 array of spatially separate symbols whose

position conveyed no information; the symbols were of the same form as those used by

Wills and McLaren (1997). T heir elemental nature allowed them to be easily coded in a

connectionist network. Furthermore, it was expected that the large size of the arrays

would make it dif® cult for subjects initially to adopt a cognitive, rule-based strategy. T he

training procedure employed was also similar to that used by Wills and McLaren. Spe-

ci® cally, instead of learning through feedback to their responses, subjects merely had to
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observe while the appropriate category information was shown in conjunction with each

exemplar.

T he experiment comprised two conditions: A30B30, in which the training exemplars,

which were distortions of two non-overlapping prototypes, A and B, were presented with

their correct category labels; and A15B15C30, in which a random half of the training

exemplars from each category were incorrectly assigned to an alternative category, C.

T he latter condition can be considered as implementing a form of partial reinforcement

during training. For both conditions training was followed by a binary categorization task,

AB, in which a series of test exemplars spanning the range between the two prototypes

had to be classi® ed as either A or B. In addition, the A30B30 condition included a second

test manipulation, ABX, which employed a series of test exemplars that were constructed

identically to the AB set except that half of their elements were replaced with ones that

had not previously been seen. T his last test condition can be thought of as a form of

generalization decrement manipulation.

T hus, there were three experimental groups: A30B30/ AB and A30B30/ ABX, which

were compared within subject because of their identical training phases, and

A15B15C30/ AB, which employed different subjects. T he latter two were designed such

that when modelled using a single-layer feed-forward architecture, their output activatons

on test were half the magnitude of those produced for corresponding positions between

the prototypes by the A30B30/ AB group. T his modelling is considered in detail after the

presentation of the results. Both the A30B30/ ABX and the A15B15C30/ AB groups were

included in the hope of providing convergent evidence on the effects of degrading the

information needed to categorize the stimuli.

Method
Subjects and Apparatus
The subjects were 32 adults, mostly Cambridge undergraduate students, whose ages ranged

between 21 and 55. Half were tested on the A30B30/ AB + ABX condition, and the rest undertook

the A15B15C30/ AB condition.

The experiment was run from three Acorn RiscPC 600 computers with colour monitors, each in a

quiet room. The instructions and stimuli were presented on screen, and the subjects responded by

pressing keys on the keyboard. Responses and latencies were logged in a data ® le.

Stimuli
Each stimulus consisted of 12 different symbols randomly arranged on an invisible 4 3 3 grid. In

total 36 symbols were employed. These are shown together with an example stimulus in Figure 1.

The stimuli for both the A30B30 and the A15B15C30 training phases were generated in an identical

manner. For every subject, 30 of the 36 symbols were arbitrarily selected. T hese were randomly

divided into two groups of 12, one for each prototype A and B, and a set of 6 not used in training but

required for the ABX test phase. Exemplars were constructed by assigning a 10% chance of exchange

to each symbol of the relevant prototype. Exchange consisted of the replacement of the symbol by

one randomly selected from the other prototype, with the caveat that all the replacement symbols had

to be different. The symbols from each resulting exemplar were allocated arbitrary locations on an

invisible 4 3 3 grid. In this manner 30 training exemplars were produced for each category.
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For every subject a set of AB test exemplars was constructed to cover systematically the range

between prototype A (12 A symbols, no B symbols) and prototype B (no A symbols, 12 B symbols).

Henceforth these exemplars will be described in terms of their ``proportion of B symbols’ ’ , which is

the ratio of the number of B symbols present to the total number of A and B symbols. Five exemplars

were created for each of 7 different values of this ratio, namely 0/ 12 (Prototype A), 2/ 12, 4/ 12, 6/ 12,

8/ 12, 10/ 12, and 12/ 12 (Prototype B). Each was constructed by randomly selecting the appropriate

numbers of A and B symbols, such that no two symbols were the same, and arbitrarily arranging the

result on an invisible 4 3 3 grid. Stimuli for intermediate values of the ratioÐ for example, 1/ 12Ð

were not created as it would not be possible to compare them to exemplars from the ABX test phase.

ABX test stimuli differed from AB exemplars in that half their constituent symbols were ones

previously unseen by the subject. They therefore ranged from 6 A symbols, no B symbols, and 6

novel symbols, to no A symbols, 6 B symbols, and 6 novel symbols. For purposes of comparison, 5

exemplars were created for each of the 7 `̀ proportions of B symbols’ ’ used to generate the AB stimuli,

namely 0/ 6, 1/ 6, 2/ 6, 3/ 6, 4/ 6, and 6/ 6. In all other respects the manner of construction was

identical to that described above. T he composition of all the stimuli from both test phases is

summarized in Table 1.

Design
ConditionA30B30/AB+ABX: In the training phase subjects were presented with the 60 train-

ing stimuli successively, in an arbitrary order. Each stimulus was labelled either A or B, depending

upon its category. No response was required from the subjects. For the test phase the 70 AB and ABX

test stimuli were randomly intermixed and then displayed consecutively without labels. The subjects
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were directed to categorize each stimulus as either an A or a B and encouraged to respond as quickly

as convenient while being as accurate as possible.

ConditionA15B15C30/AB: In the training phase a randomly selected half of the training stimuli

from each category were assigned the label C, and the rest were correctly designated. To reduce the

likelihood of subjects learning that C stimuli were in fact exemplars from the other two categories,

they were never displayed either immediately before or after stimuli from their true category. The

order of presentation was an arbitrary combination of the following sequences:

4 3 A C b A B Ca B Ca C b

7 3 A C b Ca B

where A and B represent correctly labelled training stimuli, and Ca and C b denote C stimuli and their

original category. The test phase was identical to that described above, except that it only involved the

AB test stimuli.

Procedure
Each subject was requested to read the general instructions presented on the computer screen.

These comprised a description of the whole experiment, some details concerning the ® rst phase, and

an example of a training stimulus with accompanying label. The experimenter veri® ed that the

subject understood the instructions and then left the room for the remainder of the experiment.

The subject initiated the training phase by pressing any key on the keyboard. Each of the stimuli,

which were approximately 4.5 cm 3 3.5 cm, appeared in the centre of the screen. The appropriate

letter labelÐ an A, B, or CÐ which was of equivalent size to the stimulus appeared to its right. The

subjects were seated approximately 1 m away from the computer screen, which was approximately at

eye level. Each stimulus± label pair was presented for 5 sec. This was followed by a plain grey mask,

which covered the location of both the stimulus and the label, that appeared for 2 sec. The next pair

was then shown.

After all the training stimuli had been presented, details concerning the test phase were displayed.

Each subject was instructed to classify every test stimulus as either an A or a B as soon as possible but

with the emphasis on accuracy, and informed of the appropriate key to press for each case. The

subject initiated the test phase by pressing any key on the keyboard. Each stimulus was presented
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TABLE 1
TheProportions of A, B, andNovel Symbols Used toConstruct the Various Test Exemplars, for

Both the ABand ABXTest Phases

ABTest Exemplars ABXText Exemplars

Proportion of
Bsymbols

Number of
Asymbols

Number of
Bsymbols

Number of
novel symbols

Number of
Asymbols

Number of
Bsymbols

Number of
novel symbols

0/ 12 12 0 0 6 0 6

2/ 12 10 2 0 5 1 6

4/ 12 8 4 0 4 2 6

6/ 12 6 6 0 3 3 6

8/ 12 4 8 0 2 4 6

10/ 12 2 10 0 1 5 6

12/ 12 0 12 0 0 6 6



until the subject had responded, whereupon the next exemplar appeared. This time the stimuli were

not labelled. A reminder of the response key assignments was always present on the screen. Pressing

any key other than the two that were designated caused the computer to issue a beep and wait for an

appropriate response. Upon completion of the experiment the computer automatically stored the

results, both responses and latencies, in a data ® le. Each subject was thanked for participating.

Results
Two measures of performance on test trialsÐ response and latencyÐ were taken.

Responses
A plot of the subjects’ mean response against proportion of B symbols for all three

groups is shown in Figure 2a. ANOVAs were conducted on the means from each

subject. Given that groups A30B30/ AB and A30B30/ ABX were combined, whereas the

A15B15C30/ AB group employed different subjects, the groups were analysed in pairs

using three separate ANOVAs. Group was a within-subject variable for the comparison

of groups A30B30/ AB and A30B30/ ABX, otherwise it was a between-subject variable.

Groups A30B30/AB and A30B30/ABX Compared: Proportion of B symbols had a

signi® cant effect on response, F(6, 90) = 72.08, p < 0.05, whereas group did not,

F(1, 15) = 2.69. However, there was a signi® cant interaction between group and propor-

tion of B symbols, F(6, 90) = 4.99, p < 0.05.

Groups A30B30/ABandA15B15C30/ABCompared: Proportion of B symbols exerted

a signi® cant effect, F(6, 180) = 57.73, p < 0.05, group did not F(1, 30) < 1, but the

interaction was signi® cant, F(6, 180) = 6.40, p < 0.05.

Groups A30B30/ABXand A15B15C30/ABCompared: Again the effect of proportion

of B symbols was signi® cant, F(6, 180) = 24.63, p < 0.05, whereas that of group was

not, F(1, 30) = 2.74. However, there was no signi® cant interaction between the two,

F(6, 180) = 1.14.

Linear regression was employed to approximate the results from each group with a

straight line. In all cases the model ® t was signi® cant, Fs(1, 110) > 56.29, p < 0.05. In

order to determine whether there were signi® cant differences in gradients between groups,

separate regression lines were calculated from each subject’s data. T he gradients for groups

A30B30/ AB (mean = 2 0.0853) and A30B30/ ABX (mean = 2 0.0500) differed signi® cantly,

t(30) = 4.86, p < 0.05, as did those for groups A30B30/ AB and A15B15C30/ AB (mean =

2 0.0440), t(30) = 3.95, p < 0.05. However, there was not a signi® cant difference when

groups A30B30/ ABX and A15B15C30/ AB were compared, t(30) = 0.50.

Latencies
Latency should be regarded as a secondary performance measure to response, as the

subjects were not required to respond within a limited time and so were under little time

pressure. T he mean latencies for subjects in each group are shown against proportion of

B symbols in Figure 2b. ANOVAs were performed on the means from each subject.
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FIG. 2. (a) Mean response data for groups A30B30/ AB, A30B30/ ABX and A15B15C30/ AB. Mean response is

equivalent to the probability of responding ` À’ ’ . (b) Mean latency, in seconds, for groups A30B30/ AB, A30B30/

ABX, and A15B15C30/ AB.



GroupsA30B30/ABandA30B30/ABXCompared: Subjects took signi® cantly longer to

respond in group A30B30/ ABX than in group A30B30/ AB, F(1, 15) = 17.40, p< 0.05, and

proportion of B symbols had a signi® cant effect on mean latency, F(6, 90) = 3.53, p< 0.05.

However, there was no signi® cant interaction between group and proportion of B symbols,

F(6, 90) = 1.04.

GroupsA30B30/ABandA15B15C30/ABCompared: Proportion of B symbols exerted a

signi® cant effect, F(6, 180) = 4.44, p< 0.05, but group did not, F(1, 30) < 1. Nor was the

interaction signi® cant, F(6, 180) = 1.95.

Groups A30B30/ABXand A15B15C30/ABCompared: Again the effect of proportion

of B symbols was signi® cant, F(6, 180) = 2.46, p < 0.05, and that of group was not,

F(1, 30) = 2.48. T he interaction between the two just failed to reach signi® cance

F(6, 180) = 2.21.
1

Discussion
T his experiment con® rms Wills and McLaren’ s conclusions; ® rst, that people do not

necessarily ® nd it dif® cult to learn to distinguish categories with polymorphous-like

structure, and second, that an orderly generalization gradient is produced by discrimi-

native training. However, for present purposes the interesting ® nding is that group

A30B30/ AB has produced a steeper generalization gradient than groups A30B30/ ABX

and A15B15C30/ AB, whereas the gradients generated by the latter are effectively the

same. T his suggests that what counts are the activations of (or net associative strengths

to) the output units corresponding to the available responses. From a theoretical

perspective, it is in this sense that the ``partial reinforcement’ ’ and ``generalization decre-

ment’ ’ conditions are equivalent.

Modelling
In order to establish which decision rules were capable of predicting this result, an

analogue of the experiment was presented to a single-layer, feed-forward, delta-rule net-

work in combination with the various decision rules. Given that the categories were

linearly separable, it was not felt necessary to employ a more complex architecture using

an algorithm such as backpropagation.

T he network comprised 30 feature (input) units and three name (category) units that

each received connections from all the feature units. T he activation of a name unit was

calculated by taking the weighted sum of the activations of all the units connected to it.

Formally, for name unit n connected to F feature units:

an = S af wnf 5
F
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accordance with the Greenhouse and Geisser (1959) correction for non- sphericity, giving F(4.86, 145.8) = 2.21,
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where wnf is the weight of the connection from feature unit f to name unit n, and ax is the

activation of unit x. Initially the weights were set to zero, and learning followed the delta

rule (McClelland & Rumelhart, 1985). Formally:

d wnf = SD naf given that D n = en 2 an 6

where en is the external input to name unit n, and S is a constant that determines the rate

of learning. Swas set to 0.005 for all the simulations.

Each feature unit corresponded to a particular symbol. T hus the experimental stimuli

were represented by setting to one the activation of those feature units whose symbols

were present and assigning a value of zero to the rest. T he three name units corresponded

to the three categories A, B, and C. For each training exemplar the external input to the

name unit representing its category was set to one, and the rest took a value of zero. T he

weights were updated once by the delta rule after the presentation of each training

stimulus. During test the weights were frozen and the activations of the name units

produced by each exemplar recorded.

In all other respects both the generation and order of presentation of the stumuli were

identical to that in the experiment. T hus the A30B30/ AB and A30B30/ ABX groups were

combined and run together on the same network, whereas group A15B15C30/ AB

employed a new network.

T he mean activations produced on test for each proportion of B symbols and every

group were calculated from the results of 1,000 simulations. T he four decision rules were

applied to the A and B name unit values from this data. T he exclusion of the C unit values

is of no relevance to groups A30B30/ AB and A30B30/ ABX, because there were no C

exemplars in these groups, resulting in the C unit activations always being zero.

T he probabilities of response produced by the various rules are shown in Figures 3

and 4. T hey are taken to be indices of the mean response measures used in the experi-

ment. T he values of k employed were chosen to be consistent with the modelling of the

second experiment, which will be discussed later. It can be seen that all the rules, except

the simple ratio rule, successfully predict that the generalization gradient produced by the

A30B30/ AB group should be steeper than that for group A30B30/ ABX.

For the A15B15C30/ AB group, which had a training phase that included C exemplars,

the fact that C unit values were omitted did affect the predictions of the various rules.

T heir omission was based on the assumption that as on test subjects had no opportunity

to respond ``C’ ’ , their performance would be adequately described by a decision process

based only on A and B unit activations. T he modelling predicted that if this assumption

was correct, then the mean responses for groups A30B30/ ABX and A15B15C30/ AB should

not differ signi® cantly, as their A and B name unit activations were effectively equivalent.
2

T he experimental results demonstrated this to be the case, thus justifying the assumption.

From Figures 3 and 4 it is clear that the simple ratio rule is the only function inconsistent
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In fact, there was a small difference between the A and B name unit activations for groups A30B30/ ABX and

A15B15C30/ AB, which was not entirely due to the randomized aspects of the simulations. Instead, it was a result

of the constraints placed upon the order of presentation of the training exemplars in group A15B15C30/ AB.

However, given the very small magnitude of this effect, it is not surprising that it does not reach signi® cance in

the empirical results, and it does not seem to be a matter for concern.



with the ® nding that the generalization gradient for the A15B15C30/ AB group was shal-

lower than that produced by group A30B30/ AB.

In summary, the evidence converges on the conclusion that the simple ratio rule does

not provide an adequate model of human performance, at least with regard to the type of
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task and network considered here. T he fact that the mean response results for groups

A30B30/ ABX and A15B15C30/ AB were very similar suggests that, at least in this case,

decision rules should only include the activations of output units that correspond to

responses available on test. A discussion of the latency data will be left until the winner-
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take-all architecture is considered, as the decision rules used here only generate predic-

tions concerning mean response.

In order to dissociate the three remaining candidate decision rules, a second experi-

ment was performed. T his experiment invokes another method of manipulating output

activationÐ the amount of training given.

EXPERIMENT 2
T he form of the task and stimuli employed were the same as in Experiment 1. Experi-

ment 2 comprised two groups: A30B30/ AB* and A10B10/ AB*. Group A30B30/ AB* was

identical to group A30B30/ AB in all except two respects: ® rst, during the test phase

subjects were presented with 10 exemplars for each proportion of B symbols rather

than 5, with the aim of reducing the variability in the data; second, the test exemplars

covered all 13 possible proportions of B symbols instead of just 7. T hus a more detailed

generalization gradient was produced so increasing the chance of discriminating

between the rules.

Group A10B10/ AB* differed from group A30B30/ AB* in that subjects only received 10

training exemplars per category in the former compared to 30 per category in the latter.

Given this difference in training, the two groups were a between-subjects manipulation.

T hese groups were chosen so that when modelled using the single- layer feed-forward

network, the former produced output activations on test approximately half the magni-

tude of those generated for corresponding proportions of B symbols by the latter.

Method
Subjects and Apparatus
The subjects were 32 adults, mostly Cambridge graduate students, who were paid for their

participation. Their ages ranged between 17 and 53. None had been included in Experiment 1.

Half were run on group A30B30/ AB* and the remainder on group A10B10/ AB*. T he apparatus was

the same as that employed in Experiment 1, apart from the fact that only one computer was used.

Stimuli
The stimuli for both groups were generated in an identical fashion to those for group A30B30/ AB,

except that test exemplars were constructed for all 13 possible proportions of B symbols.

Design
Group A30B30/AB*: In the training phase 60 labelled exemplars, half from each category,

were presented to the subjects successively, in an arbitrary order. During the test phase 130

exemplars, 10 for each proportion of B symbols, were randomly intermixed and displayed con-

secutively. As in Experiment 1, the subjects were required to categorize each test exemplar as

either an A or B and were requested to respond as soon as possible consistent with making as few

errors as possible.
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GroupA10B10/AB*: The training phase differed from that in group A30B30/ AB* by the fact

that only 10 exemplars from each category were presented. Testing was identical to that for group

A30B30/ AB*.

The procedure was the same as that employed in Experiment 1.

Results
Responses
Figure 5a shows subjects’ mean responses plotted against proportion of B symbols for

both groups. An ANOVA was conducted on the means from each subject, with group as a

between-subject variable. Proportion of B symbols was found to have a signi® cant effect on

response, F(12, 360) = 87.53, p< 0.05, but group did not, F(1, 30) < 1. T he interaction

between group and proportion of B symbols was signi® cant, F(12, 360) = 2.55, p< 0.05.

Linear regression demonstrated that both groups could be meaningfully modelled

using straight lines, F(1, 206) > 284.49, p < 0.05. As for Experiment 1, separate regres-

sion lines were calculated from each subject’s data. It was found that group A30B30/ AB*

(mean = 2 0.0967) had a signi® cantly steeper gradient than did group A10B10/ AB*

(mean = 2 0.0734), t(30) = 3.35, p < 0.05.

Latencies
Again it should be appreciated that because the subjects were not under severe time

pressure, latency can only be treated as a secondary performance measure. T he mean

latencies for subjects in both groups are shown against proportion of B symbols in Figure

5b. An ANOVA was performed on the means from each subject. T his established that

group did not have a signi® cant effect on mean latency, F(1, 30) < 1, but proportion of B

symbols did, F(12, 360) = 7.97, p < 0.05. T here was no signi® cant interaction between

the two, F(12, 360) < 1.

Discussion
From the results it is clear that group A30B30/ AB* produced a steeper generalization

gradient than did group A10B10/ AB*Ð a result that is very much in line with those in

Experiment 1. T he experiment was simulated in order to determine which of the remain-

ing decision rules were capable of accounting for this ® nding.

Modelling
T he groups were modelled in a manner identical to that used for Experiment 1, except

that the C name unit was omitted as the experiment had not included C exemplars. T he

probabilities of response generated by the various rules are presented in Figure 6. All

three rules successfully predicted that the A30B30/ AB* group’s generalization gradient

should be steeper than that for the A10B10/ AB* group.
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FIG. 5. (a) Mean response data for groups A30B30/ AB* and A10B10/ AB*. (b) Mean latency, in seconds, for

groups A30B30/ AB* and A10B10/ AB*.



Hence, in an attempt to dissociate between them, a more detailed comparison of their

predictions and the A30B30/ AB* group’s mean response data was performed. Group

A30B30/ AB* was chosen because, ® rst, it had a better-resolved generalization gradient

than those produced by groups A30B30/ AB, A30B30/ ABX, and A15B15C30/ AB, and,

second, the sigmoidal shape of its curve was more pronounced than that for group

A10B10/ AB*. Numerical minimization was employed to ® nd for each rule the value of

k that produced the smallest mean squared error between its predictions and the means

from each subject. T he values for k were 4.4, 1.4, and 0.8, for the exponential ratio rule,

simple difference rule, and exponential difference rule, respectively. For purposes of

consistency they have been used throughout this paper.
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FIG. 6. Probabilities of responding ` À’ ’ predicted by (a) the exponential ratio rule for k = 4.4, (b) the simple

difference rule for k = 1.4, and (c) the exponential difference rule for k = 0.8.



From Figure 7a it can be seen the predictions of the exponential ratio rule always lie

within the envelope described by the 5% error bars, corrected for the number of com-

parisons, of the mean response data. However, Figures 7b and 8a demonstrate that this is

not the case for either the exponential difference rule or the simple difference rule, which

have, respectively, nine and two points outside the error bars. As a correction has been

made for the number of comparisons, the predictions of a given rule can be said to be

signi® cantly different from the data even if they fall outside the error bar for only one

point. T herefore the probabilities of response produced by the exponential ratio rule are

the only ones not signi® cantly different from the empirical results for group A30B30/ AB*.

Clearly the exponential difference rule is not a feasible candidate to model the decision

process. However, it might still be argued that it would not be justi® ed to reject the simple

difference rule when it lies marginally outside the error bars for only two of the thirteen

points. T herefore the rule was modi® ed to determine whether the inclusion of a second

free parameter, g, would allow it to account for the results. Formally:

P(a) = [k(Aa 2 Ab) + 1] / 2 + g 7

g can be considered to be a factor to compensate for subjects’ preference for one parti-

cular response key. However, as Figure 8b shows, even with the addition of an extra free

parameter, after best ® tting one point still lies outside the error bars of the mean response

data.

T here are two additional problems with the simple difference rule. First, since it

always produces a straight line regardless of the magnitude of k, it totally fails to capture

the sigmoidal shape of the data. Second, it predicts impossible probabilities of responseÐ

namely, ones above one and below zero. Moreover, if the free parameter(s) were adjusted

to prevent this, then its ® t to the group A30B30/ AB*, data would become even worse.

Given all these dif® culties, it can, at the very least, be concluded that the exponential ratio

rule provides a substantially better model of the decision process than does the simple

difference rule.

GENERAL DISCUSSION
In summary, the exponential ratio rule, applied to those activations that correspond to

responses available on test, generates the most satisfactory description of human perfor-

mance for the type of task and network considered here. However, it does not produce

predictions concerning latencies, nor does it offer a neuron-like mechanism for the

decision process. An alternative that satis ® es both of these criticisms is to model the

decision stage using a noisy winner-take-all network.

Modelling
Figure 9 illustrates the architecture employed. It consisted of two units, one for each

possible response. Both units had a self-excitatory connection, an excitatory link from the

appropriate name unit, and an inhibitory connection from the other response unit. T he

weights of these links were ® xed. Upon the presentation of the name unit activations, the
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FIG. 7. A comparison between the mean response data from group A30B30/ AB* and the predictions of (a) the

exponential ratio rule for k = 4.4. and (b) the exponential difference rule for k = 0.8. The error bars represent

the 5% signi® cance level and have been corrected for the number of comparisons.
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FIG. 8. A comparison between the A30B30/ AB* group’ s mean response data and the predictions of the simple

difference rule for k= 1.4 (a) in its original form, and (b) with the addition of a second free parameter (g= 2 0.06).



two response units competed until the activation of one exceeded the other by a speci® ed

amount. T he response corresponded to the most active unit and the latency to the

number of cycles it took the network to reach a decision. T he probabilistic nature of

the outcome was due to the presence of noise in the system.

T he activation of a unit was determined using identical functions to those employed by

Wills and McLaren (1997). Speci® cally:

Ac = (Ac2 1 + En)/ (1 + En + D) if n > 0 8

and otherwise Ac = (Ac2 1 + En)/ (1 2 En + D) 9

where Ac and Ac2 1 are the activations for the current and previous cycles, respectively, E
and Dare constants determining the rate of excitation and decay, and n is the total input

to the unit. T hese equations were derived from those described in McClelland and

Rumelhart (1985). T he units’ activations were never allowed to fall below zero. n was

calculated using:

n = e + Ac2 1 2 b 10

where

e = a + rnd(N) ? rnd(1, 2 1) 1 $ e $ 0 11

where a and b are the activations of the appropriate name unit and the opposite response

unit, respectively, rnd(N) is a randomly selected real number between 0 and N, and

rnd(1, 2 1) randomly produces 1 or 2 1. It is the last term in this equation that describes

the noise in the system, and the value of Nthat determines its level. A new value for the
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FIG. 9. The winner-take-all network architecture.



noise term was calculated every cycle. Processing was terminated when the modulus of the

difference between the response unit activations equalled or exceeded a threshold value,

denoted by s. T he magnitudes of s, N, D, and Ewere 0.5, 2, 0.1 and 0.2, respectively.

T he mean name unit activations that were produced by the single-layer feed-forward

network, for all the groups, were input into this model. T he resulting probabilities of

response, which have been averaged over 1,000 simulations, are shown in Figure 10. It can

be seen that the winner-take-all architecture successfully captures the empirical ® ndings

concerning mean response, at least with regard to the differences in the slopes of the

generalization gradients between groups. In addition the model’s predictions were com-

pared in greater detail to the A30B30/ AB* group’s mean response data, see Figure 11.

T his demonstrated that one point out of the thirteen lay marginally outside the 5% error

bars. However, this is hardly surprising, given that no attempt was made to best ® t the

model’s predictions to the results because of the computational dif® culties involved.

Indeed, the fact that even without best ® tting no other points were signi® cantly different

from the data suggests that the winner-take-all network could provide at least as good an

account of the mean response results as the exponential ratio rule.

A critic might argue that this is no great achievement as the model contains four free

parameters. However, it should be appreciated that small changes in the values of E, D,

and s do not greatly affect the network’s predictions, and that no effort was made to

improve the ® t by varying these paramenters.

T he predictions for latencies produced by the winner-take-all architecture are shown

in Figure 12. It can be seen that the model predicted a curvilinear relationship between

latency and proportion of B symbols, for all groups. T his is because the difference

between the A and B name unit activations input into the network was greater for

more extreme proportions of B symbols, resulting in a smaller number of cycles until

decision for the extremes compared to intermediate proportions.

Prima facie inspection of the empirical results (Figures 2b and 5b) suggested the

existence of a curvilinear relationship. In order to determine whether this was actually

the case, an attempt was made to ® t inverted-U shaped functions to the data from each

group. T his was achieved by pairing the values for the proportion of B symbols about the

mid-point of 6/ 12 (e.g. 0 & 12/ 12, 2/ 12 & 10/ 12 etc.) and then, for each subject,

averaging the latencies produced for these pairs. Following this transformation regression

analysis revealed that only groups A30B30/ AB* and A10B10/ AB* were adequately mod-

elled by a straight line, which implied that the data from the other groups did not exhibit

a signi® cant U-shaped trend. However, to compensate for the possible effect of overall

differences in latency between subjects, each subject’s data was recoded by subtracting the

mean across all proportions of B symbols from the values for each proportion. Subse-

quently inverted-U shaped functions provided a signi® cant ® t for all the groups.

T hus the winner-take-all model has the capacity to produce the curvilinear relation-

ship between latency and proportion of B symbols demonstrated in the experimental

results. However, the differences between groups evident in the model’s predictions are

not borne out by the results. T his might be attributed to the high variability in the data

and the fact that very little time pressure was imposed upon the subjects. Further

investigation, perhaps employing tighter time constraints, would be required to establish

whether the latencies generated by subjects present a signi® cant challenge to the model.
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FIG. 10. The probabilities of responding `̀A’ ’ predicted by the winner-take- all network, averaged over 1,000

simulations, for (a) groups A30B30/ AB, A30B30/ ABX, and A15B15C30/ AB, and (b) groups A30B30/ AB* and

A10B10/ AB*.



CONCLUSIONS
Only the exponential ratio rule, operating on the activations of the name units that

corresponded to responses available on test, was able to approximate to an adequate

account of all the mean response data presented here. A noisy winner-take-all architecture

was also found to be compatible with the mean response results. T his later approach has

the advantage of providing a mechanism whereby a response is made; there is something

unsatisfactory about using a rule that gives a probability of response, then throwing a dice

to decide the outcome. Furthermore, in contrast to many theories of categorization, this

mechanism has the potential to generate latencies as well.

One additional concern might be that our analysis of decision rules only applies in the

case of a simple error-correcting algorithm. We have two answers to this. T he ® rst is that

there is considerable evidence for associative learning in humans and other animals being

error-correcting in nature (for a review see Mackintosh, 1983; Pearce, 1997; and Shanks,

1995). T he second is that, for the purposes of this research, the only important predic-

tions of the learning algorithm are that output (category) activation is a linear function of

the number of appropriate input features, and an increasing function of the length of

training. As such our analysis is not directly tied to a particular learning algorithmÐ it

applies also to any other that would result in the same input/ output function under the

present experimental conditions.

We note that our analysis and, in particular, the decision network, can equally be

applied to performance in animals other than humans. As an example that draws on
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FIG. 11. A comparison between the mean response data from group A30B30/ AB*, and the predictions of the

winner-take-all network. T he error bars represent the 5% signi® cance level and have been corrected for the

number of comparisons.
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FIG. 12. The mean number of cycles for the winner- take-all network to reach a decision, averaged over 1,000

simulations, for (a) groups A30B30/ AB, A30B30/ ABX, and A15B15C30/ AB, and (b) groups A30B30/ AB* and

A10B10/ AB*.



the studies reported here, consider the issue of summation. If stimuli X and Yare

reinforced and then tested in compound as XY, should we expect a higher rate of

responding to the compound than to X or Y? Our answer would be that you might

get a higher rate of responding (summation) after relatively little training, but little

evidence for summation after more prolonged training that took performance on the

training discriminations nearer asymptote, because at this point increments in associative

strength will have little effect on response probability. T his follows from the assumption

that, under these circumstances, subjects will be operating in the relatively ¯ at region of

the function relating activation (or associative strength) to response probability (or

response rate) for the stimuli in question.

T he foregoing example makes it clear that any failure to observe summation as pre-

dicted by a Rescorla± Wagner (1972) type analysis need not be taken as evidence against

that learning algorithm. In this light, it is not surprising that if Xand Yare two stimuli

relatively close to one another on some dimension and testing is to some intermediate

value on this dimension, then better responding to the test stimulus than to either Xor Y
is not observed (Mackintosh, 1974, pp. 532). Once again we would argue that although

the associative strength from the test stimulus to the US might well be greater than that

for Xor Y, the ¯ at response function at this level of associative strength prevents this

difference from manifesting. On the other hand, the result that a form of summation can

be observed when two reinforced stimuli are relatively far apart on some dimension and

responding to an intermediate test stimulus is assessed ® ts well with the response function

generated by the decision mechanism offered here.

We believe that the further investigation of tasks involving more than two categories will

provide an interesting test for both the winner-take-all mechanism and the exponential

ratio decision rule. If, as we suspect, the winner-take-all network can account for the data

from studies of this type and its predictions concerning latencies are borne out, then it has

the potential to be applied far more widely than just to simple discriminations. Indeed, it

could, in principle, be used to model any situation in which the output of a connectionist

network needs to be converted to one of a particular set of competing responses.
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CateÂ gorisation perceptuelle: modeÁ les connexionistes et
reÁ gles de deÂ cision

MeÃ me si les modeÁ les de l’ apprentissage associatif chez les humains en termes de reÂ seaux connexionistes

sont populaire, le meÂ canisme par lequel les activations terminales (<<output activations>>) sont

converties en probabiliteÂ s de reÂ ponse a recË u treÁ s peu d’attention. Plusieurs modeÁ les de ce processus

deÂ cisionel sont consideÂ reÂ s incluant une simple reÁ gle de proportion, une simple reÁ gle de diffeÂ rence, leurs

versions exponentielles, et un reÂ seau gagnant-prend-tout (<<winner- take-all network>> ). Deux

expeÂ riences de cateÂ gorisation qui ont tenteÂ de seÂ parer ces modeÁ les sont rapporteÂ es. Des analogues de

ces expeÂ riences furent preÂ senteÂ s aÁ un simple reÂ seau connexioniste utilisant l’algorithme d’apprentissage

delta. Seulement la version exponentielle de la reÁ gle de proportion et l’ architecture gagnant-prend- tout,

opeÂ rant sur les activations terminales des reÂ seaux connexionistes qui correspondent aux reÂ ponses durant

le test, furent capable de preÂ voir de facË on compreÂ hensive les reÂ sultats. De plus, aÁ l’ encontre de la version

exponentielle de la reÁ gle de proportion, le modeÁ le gagnant-prend-tout peut, potentiellement, preÂ voir les

temps de reÂ ponses. Des recherches futures vont devoir deÂ terminer si ces temps de reÂ ponses produits

dans des conditions plus rigoureuses se conforment aux preÂ dictions de ce modeÁ le.

CategorizacioÂ nperceptiva: modelosconexionistasyreglas
de decisioÂ n

Aunque actualmente con frecuencia se modela el aprendizaje asociativo humano usando redes

conexionistas, el mecanismo por el que sus activacioÂ nes de salida se convierten en probabilidades de

respuesta ha recibido relativamente poca atencioÂ n. Se consideran diversos posibles modelos de este

proceso de decision incluyendo una regla de razoÂ n simple, una regla de diferencia simple, sus versioÂ nes

exponenciales y una red todo-para-el- ganador. Se llevaron a cabo dos experimentos de categorizacioÂ n que

intentaron separar estos modelos. Se presentaron anaÂ logos de los experimentos a una red de una sola

capa, regla delta y propagacioÂ n hacõÂ a adelante. Solo la regla de razoÂ n exponencial y la arquitectura todo-

para-el-ganador, actuando sobre las activacioÂ nes de salida de la red que correspondian a respuestas

disponibles sobre la prueba, fueron capaÂ ces de predecir completamente los resultados de la media de

respuesta. AdemaÂ s, a diferencia de la regla de razoÂ n exponencial, el modelo todo- para-el-ganador tiene la

potencialidad de predecir latencias. Seran necesarios nuevos estudios para determinar si las latencias

producidas bajo condicioÂ nes mas rigurosas se ajustan a las prediccioÂ nes del modelo.
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