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Two experiments are reported that investigate the difference in g radient of generalization

observed between one-category (non-d iscrim inative) and two-category (discrim inative) train-

ing. Extrapolating from the resu lts of a number of animal lear ning studies, it was predicted

that the g radient should be steeper under discrim inative training. The ® rst experiment

con ® rms this basic prediction for the stimuli used, which were novel, prototype-structured,

and constructed from 12 symbols positioned on a g rid. An explanation for the effect, based

on the Rescorla ± Wagner theory of Pavlovian conditioning (Rescorla & Wagner, 1972), is that

under non-discrim inative train ing ``incidental stimuli’ ’ have signi ® cant control over respond-

ing, whereas under discrim inative train ing they do not. Incidental stimuli are those aspects of

the stimulus, or the surrounding context, that are not differentia lly reinforced under dis-

crim inative train ing. This explanation leads to the prediction that a comparable effec t of

blocked versus interm ixed discrim inative train ing should also be found. This prediction is

discon ® rmed by the second experiment. An alternative model, still based on the Rescorla ±

Wagner theory but w ith the add ition of a decision mechanism comprising a threshold unit

and a competitive network system, is proposed, and its ability to predict both the choice

probabilities and the pattern of response times found is evaluated via simulation.

The concept of a generalization gradient is perhaps one of the most pervasive in psycho-

logy. For a very wide range of situations, and indeed species, it can be concluded that if a

response is trained to a stimulus, then the likelihood of another stimulus also evoking that

response is a function of the similarity between them . W hen testing rats, rabbits, or

pigeons, reliable generalization grad ients on a variety of simple physical dimensions

have been found; exam ples include the wavelength of a ligh t (Guttman & Kalish,

1956 ), the frequency of a tone (M oore, 1972), and the size of a circle (Grice and Saltz,

1950 ). Work with pigeons demonstrates that orderly generalization grad ients can also be
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observed with rather more complex stimuli: Brunswik faces, for exam ple (Huber & Lenz,

1993 ), or shapes varying in colour, num ber, and form (Jitsumori, 1993), or seed-like

stimuli (Lea, Lohmann, & Ryan, 1993). Shepard has demonstrated that, within a psy-

chological space determ ined by the mistakes made in an identi® cation learning task,

human subjects show an orderly (exponential) generalization gradient, and that this holds

for stimuli as diverse as circles of various sizes, vowel phonemes, and morse code signals

(Shepard, 1987). Humans also show generalization gradients in tasks procedurally more

sim ilar to those used in the animal work (e.g. Buss, 1950).

One of the empirical facts about generalization gradients in animals is that they are

sharpened by d iscrim ination training. The robustness of this effect is well established

within an imal learning research (e.g. Hanson, 1959; Jenkins & Harrison, 1960; Newman &

Baron, 1965), and the generally accepted explanation is that discrim inative training neut-

ralizes the effect of ``incidental stimuli’ ’ (see M ackintosh , 1974 for a discussion). Incid-

en tal stimuli are aspects of the stimulus, or of the surrounding context, that are not

differentially reinforced under discrim inative training. For exam ple, in the Newman ±

Baron study, the stimulus was a single vertical white line on a green background. Pigeons

were reinforced for pecking it and then tested on lines of varying orientation (from

upright to 45 8 either side), also on a green background. They showed a basically ¯ at

generalization gradient unless non-reinforced presentations of the background alone were

also included in training. The explanation offered for this result is that in the absence of

differential reinforcement the green background is as good a predictor of food as the line

and therefore has signi ® cant control over responding. As the background is present in all

test exam ples, a shallow generalization gradien t is seen. Associating the background alone

with the non-occurrence of food reduces its predictive value and hence increases the

steepness of the generalization gradien t.

The Rescorla± Wagner model of Pavlovian conditioning (Rescorla & Wagner, 1972)

may be employed to give a more precise statement of this general line of reasoning.

The model states that, on any given trial, the change in strength of the association

between a conditioned stimulus (CS) and the unconditioned stimulus (UCS) is:

N

D w = a ? b ? ( l 2 S wi) 1

where l is the asymptote of learning for the US, and S w i is the sum of the associative

strengths for all N CS present on that trial. a and b control the rate of learning; b is

assumed to be determined by the salience of the US and a by the salience of the relevant

CS. To see how Equation 1 predicts a steeper grad ient of generalization under discrim-

inative training, consider a simple case where training involves just two conditioned

stimuli: the target stimulus (CS T ) and an inciden tal stimulus (CS C ) of equal salience.

In non-discriminative training, CST and CSC occur together and are reinforced; they

therefore gain associative strength as a function of their salience and, at the limit, this will

be equal to l /2. In discriminative training, CST and CSC also occur together in the

presence of reinforcement, but, in addition , CSC occurs alone in the absence of reinforce-

ment. For non-reinforced trials, l will be zero, so CSC will lose associative strength on

these trials. This will result in CST ’ s associative strength rising more quickly than CSC ’ s,
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and the difference between the two will be further compounded by S wi approaching l on

reinforced trials. Learning stops when CST has an associative strength of l and CSC has

an associative strength of zero. Hence the gradient of generalization in the discrim ination

condition will be steeper as CSC , presumably constant on test, has little control over

responding. Therefore, changes in CST will have a greater effect on behaviour.

The purpose of the present paper is to investigate whether a similar generalization

gradient difference between discriminative and non-discriminative training can be seen in

human category learning and, if so, whether an explanation sim ilar to the one given above

is appropriate. The acquisition of two or more novel categories has been the sub ject of

many previous studies, and some of these provide data that may be used to assess general-

ization gradients. Examples include the study of prototype effects (e.g. Posner & Keele,

1968 ), of probabilistic cue learning (e.g. Estes, Burke, Atkinson, & Frankmann, 1957), and

of the diagnosis of imaginary diseases (e.g. Estes, 1986). Some of the work on exemplar

theories of categorization (e.g. Nosofksy, 1986, 1991) is also applicable. However, none of

these studies has the non-discriminative training condition needed for comparison with

discrim inative training. The studies reported in this paper provide the appropriate con-

trol groups.

It seems reasonable in principle to extend the Rescorla± Wagner-based explanation to

human category learning. Gluck and Bower (1988) have previously demonstrated that it

can be used (with a slight modi® cation detailed below ) to predict aspects of human

subjects’ performance in a simulated two-disease medical diagnosis paradigm. This situ-

ation is not rad ically different from a standard categorization experiment. Furthermore, as

a number of authors have noted, Equation 1 is in many ways equivalent to the delta rule,

an error-correcting algorithm widely used in connectionist models (e.g. M cClelland &

Rum elhart, 1985; Rumelhart, H inton, & W illiams, 1986). Such models have had some

success in explaining certain aspects of human classi® catory behaviour.

In the Gluck ± Bower paper, the two diseases are represented by + l and 2 l rather than

the + l and 0 used to represent reinforcement and its ab sence in the Rescorla± Wagner

model. This modi® cation allows both diseases to cause learning on the ® rst trial, even

when the associative strengths start at zero. In this form , the G luck ± Bower model can

poten tially be applied to any two-choice category learning experiment by representing

each sign i® cant aspect of the two categories with a different CS. If, in addition, the subject

were representing some components of the stimulus inciden tal to the current discrimina-

tion, then one might expect to see an effect analogous to the difference between discrim-

inative and non-discrim inative training. In other words, presenting the sub ject with

exam ples from just one of the two categories should result in a shallower gradient of

generalization around the category locus than if train ing involves both categories.

This may be clearer with a speci® c exam ple. Consider the simplest case of three

equally salient stimulus components: one a component perfectly predictive of one cat-

egory, another sim ilarly predictive of the other, and the third w ith no predictive value but

which always appears in compound with one of the other two. If just one category is

presented, then the perfectly predictive component and the inciden tal one gain equal

associative strength. If both categories are presented interm ixed , then, on any trial, the

incidental component is equally likely to be paired with either of the categories. This will

result in opposing changes in associative strength, which will cancel. Learning stops with
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the two perfect predictors having equal associative strength of the opposite sign and the

incidental stimulus having an associative strength of zero. If a generalization test is

performed that systematically varies the similarity of the perfect predictor component

to the one used in non-discrim inative training whilst the similarity of the incidental

component to the trained one stays constant or varies unsystematically, then the general-

ization gradient should be steeper in the two-category (discrim inative) than the one-

category (non-discriminative) training condition.

Ideally, research on this issue would use categories that allowed stimulus factors to be

predictive or non-predictive. One stimulus structure that allows this can be found in

studies of what are often described as polymorphous concepts (Dennis, Ham pton, & Lea,

1973 ). The nam e is intended to cover any collection of stimuli whose category member-

sh ip is de ® ned by an m-out-of-n rule; an example would be ``at least two of symmetric,

black, and composed of circles’ ’ . In animal studies, at least, orderly generalization gra-

dients have been observed around such categories (Huber & Lenz, 1993; Jitsumori, 1993;

Lea, Lohmann, & Ryan, 1993). Furthermore, their representation in the models dis-

cussed above is unproblematic: each of the n may be considered as one partially predictive

stimulus component. Hence it seemed reasonable to study the effect of type of training

(discriminative versus non-d iscrim inative) on the generalization gradient observed

around polymorphous categories. This was the purpose of the ® rst experiment.

EXPERIMENT 1

Each of the stimuli used in th is experiment was an array of spatially separate symbols

(elements) whose position in that ar ray conveyed no information. Stimuli consisting of

arrays of separable elements have been used extensively in the study of categorization with

humans (e.g. M edin & Schaffer, 1978; Regehr & Brooks, 1995; Shepard, Hovland, &

Jenkins, 1961), although the ones used here differ in that the underlying structure is

basically polymorphous and the position of elements is unimportant.

Comparing two-category learn ing with one-category learning raises two methodo-

log ical problems. The ® rst is how mean ingful category membership information may

be provided in a one-category (non-discrim inative) situation. The typical ``guess and

correct’ ’ method of two-category (discrim inative) studies seems inappropriate, as the

answer will always be the same. Here this problem is resolved by presenting the category

label alongside the stimulus in both the one- and the two-category conditions. The second

problem is to determine the appropriate number of training trials in the non-discrim-

inative condition Ð one can either control for the total number of stimuli seen or the

number for a particular category. A discussion of the relative merits of these two systems

is avoided here by includ ing both.

M ethod

Subject and Apparatus

The subjects were 36 students from Cambridge University, m ostly undergraduates, who were

paid for their participation. T hey were tested individually in a quiet experimental cubicle. T he

experiment was presented on a colour monitor (Acorn AKF60, 27 3 20 cm) in a medium-resolution
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(800 3 600 pixels) 16-colour mode, and response s were made on a standard computer keyboard, both

of which were connected to an Acorn R iscPC 600 microcomputer. Subjects sat about 1 m etre from

the screen, which was approxim ately at eye level.

Stim uli

All stimuli were composed of 12 different small p ictures (elements) placed inside a thin rectan-

gular outline m easuring 4.5 3 3.5 cm. Each element occupied a different position on an invisible g rid

4 items across and 3 down, this position be ing determ ined randomly. The 12 elements of a stimulus

were drawn randomly for each subject from a pool of 24, and for each subject th is pool was a new,

randomly selected sub-set of the elements shown in Figure 1.

The way in which elements were drawn from this sub-set to create stimuli depended on whether

they were to be used for training or for test. At the beginning of the experiment, 12 elements were

randomly designated as being genera lly predictive of one category ( `̀ A’ ’ ), and the rem aining 12 as

generally predictive of the other (``B’ ’ ). This allocation was done even if only one category would

actually be shown in training. Train ing examples were created by starting w ith the 12 appropriate

GEN ERALIZ ATION IN CATEGO RY LE ARN IN G 611

Red YellowBlueGreenBlueRed

Blue RedYellowYellowGreenGreen

Red YellowBlueGreenBlueRed

Blue RedYellowYellowGreenGreen

FIG . 1. The 36 small pic tures used to construct the stimuli in Experim ents 1 and 2. Column labels denote the

outline and ® ll colour s, outline uppermost .



predictive elements and giving each a small independent chance of being replaced by an element from

the other category. Replacement elements were chosen at random, w ith the constraint that no element

appear twice in the same stimulus. In terms of the number of predictive elements, the stimuli can be

characterized by the binomial d istribution (p = 0.9, N = 12) shown in F igure 2. (This catego ry

structure is s imilar to that produced by an ``at least 8 out of 12 ’ ’ ru le and is directly ana logous to the

form used in M cClelland & Rum elhart’ s, 1985, modelling paper.) Test exem plars were created from a

speci® ed number of genera lly predictive elements from each of the two categories, which always

summed to 12. Apart from situations where the stimulus consisted entirely of predictive elements

from one category, more than one combination of elem ents was possible. In these situations, the

elem ents to be used were chosen random ly for each stimulus.

Procedure

Twelve subjects were allocated to each of three conditions. A fter som e genera l instructions and

the presentation of an example labelled stimulus, subjects in the discrim inative train ing (A30/B30)

condition were presented with 30 examples of Category A and 30 examples of Category B sequen-

tially and in a random order. Each example was presented for 5 sec in the centre of the monitor and

was accompanied by its label, which was presented as a large sans-serif capital A or B in an outline

rectangle (4.5 3 3.5 cm) immediately to the right of the stimulus; 2 sec of a plain mid-grey mask in

the stimulus and label rectangles preceded the following example. Subjects were not required to

respond in any way; they were simply asked to concentrate, as they would later be asked to classify

new, unlabelled examples. In the non-d iscrim inative training conditions, either 30 examples of

Category A were presented (condition A30), or 60 examples (condition A60). Again, the stimuli

were accom panied by a labe l (always A in these cond itions), and subjec ts were told they would later

have to classify unlabelled examples. No examples of Category B were presented during train ing in

the non-discrim inative cond itions.

The training phase was followed by a test phase, in which 130 test stimuli, 10 from each of the 13

positions in the sequence (12 A elements, no B elements) to (no A elements, 12 B elements), were

presented in a random order. In the A30/B30 condition, subjects were asked to make a forced choice

for each stimulus from the options `̀ It is an A’ ’ and `̀ It is a B’ ’ . They were encouraged to respond as

quickly as possible, but the machine would in fact wait inde ® n itely for a response. As soon as a

response had been made, it was recorded, along w ith the time taken to make it, and the following

stimulus was presented immediately. The test procedure was very sim ilar in the A30 and A60

conditions; the option ` Ìt ’ s a B ’ ’ was replaced with the option `̀ It’ s not an A’ ’ .
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The allocation of keys to responses was counter-balanced across subjects. W ithin each condition,

half the sub jects used the `̀ X ’ ’ key to respond, w ith their left hand, ``It’ s an A’ ’ , and the ` .̀ ’ ’ key to

respond, with their right hand, ``It’ s a B ’ ’ or `̀ It ’ s not an A’ ’ . The other half were given the reverse

assignment.

Results

In case any subject had inadvertently reversed the key-to-key category assignment, sub-

jects’ performance at points 0 B elements and 12 B elements was assessed for being

signi ® cantly below chance (binomial test, N = 10, p = 0.05). Any subject who was below

chance at both points would have been replaced, but, in fact, no subject failed this test.

The counter-balance sub-cond itions did not d iffer signi ® cantly, so they were collapsed in

all subsequent analyses, for which the signi ® cance level is taken to be .05.

As can be seen from Figure 3(a), all conditions show an orderly generalization gra-

dient; as the number of elements generally predictive of Category B in a stimulus

increases, the probability that sub jects w ill call it an ` À’ ’ decreases. A mixed analysis of

variance (ANOVA), w ith one w ithin-subject variable (B elements, 13 levels) and one

between-subjects variable (experimental condition, 3 levels) showed that this effect was

signi ® cant, F (12, 396) = 150, as was the difference between conditions, F (2, 33) = 11. A

post-hoc Tukey (HSD) test revealed that the latter was due to condition A30/B30

differing signi ® cantly from both condition A30 and condition A60. Conditions A30

and A60 were not signi ® cantly d ifferent. There was also a signi® cant Condition 3 Num-

ber of B Elements interaction, F (24, 396) = 2.9.

From inspection of Figure 3(a), it would appear that the gradient in the A30/B30

condition is steeper than in the A30 or A60 conditions in the range 0 ± 6 B elements and

shallower in the range 6± 12 B elements. L inear regression was used to assess this, but ® rst

the data were checked for an overall signi ® cant linear component. This was found in all

conditions and sub-ranges: the relevant F-ratios are F (1, 82) = 97, 20, and 39, for
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conditions A30/B30, A30, and A60, respectively, in the range 0 ± 6 B elements, and

F (1, 82) = 24, 52, and 90 in the range 6 ± 12 B elements.

To assess the difference in gradients, separate regression lines were obtained for each

subject in each of the two ranges. It was found that, in the range 0 ± 6 B elements the

gradients of the lines in cond ition A30/B30, mean = 2 0.11, were signi ® cantly more

negative than the gradien ts of the lines in the A30 condition, mean = 2 0.04, t(22) =

3.8 , and the A60 condition, mean = 2 0.05, t(22) = 3.7. The gradients in the A30

condition did not differ from those in the A60 condition, t(22) = 0.76. In the range

6 ± 12 B elements the A30/B30 gradient, mean = 2 0.05, was signi ® cantly less negative

than the A30 gradient, mean = 2 0.11, t(22) = 2.1, and the A60 gradient, mean = 2 0.12,

t(22) = 3.0. Again, gradients in A30 and A60 conditions did not differ, t(22) = 0.25.

Some care must be taken in interpreting response times from an experiment that had

no speci® c time-ou t procedure, but, nevertheless, they provide usefu l additional informa-

tion. As can be seen from Figure 3(b), response time was affected by the number of B

elements a stimulus contains. Another mixed ANOVA revealed that this effect was sig-

ni ® cant, F (12, 396) = 17. A lthough the main effect of condition was not signi ® cant,

F (2, 33) = 2.6, the Experimental Condition 3 Number of B Elements in the Stimulus

interaction was, F (24, 396) = 3.6. Inspection of Figure 3(b) suggests that this interaction

is due to the A30 and A60 conditions showing an increasing trend in response time

(possibly levelling off in condition A60), whereas the A30/B30 condition shows an

inverted-U trend. In order to provide increased sensitivity for detecting trends, the

response time data were recoded by subtracting the individual sub ject mean response

time from each of the data points provided by that subject. After this recoding, all three

conditions showed a signi ® cant linear component, F (1, 154) = 6.2 for condition A30/

B30, 125 for condition A30, and 66 for condition A60. However, both the pattern of

means shown in F igure 3(b) and inspection of the residuals suggested that there was also a

quadratic component in some of the conditions. Polynomial regression revealed that this

was signi ® can t in conditions A30/B30, t(154) = 6.4, and A60, t(154) = 3.0, but not in

condition A30, t(154) = 0.71.

Discussion

Three main conclusions may be drawn from this experiment. First, people can discrim-

inate categories with a polymorphous structure, and training them to do so leads to an

orderly grad ient of generalization around the category loci. This conclusion is in line with

much of the previous research on human category learning (e.g. Estes, 1986; Posner &

Keele, 1968). Second, the gradient of generalization is sharper after discrim inative than

after non-discriminative training. This conclusion is unaffected by the way in which the

number of stimuli presented in the non-discriminative condition is controlled for. At least

for the subjects and number of discriminative training trials used here, one may either

control for the total num ber of stimuli seen or for the number of exam ples of the appro-

priate category. Although the discriminative versus non-discriminative generalization

gradient difference is well established with rats and pigeons, this would appear to be

the ® rst direct demonstration of it in humans. F inally, the pattern of response times are

generally in line with existing data on human categorization. W ithout labouring the point,
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if number of A elements is an approximate index of typicality, then the pattern is con-

gruent with Rosch’s work on semantic categories (Rosch, 1973). Data from the study of

categorization response times from a decision-bound perspective is also of a similar form

(cf. Ashby, Boynton, & Lee, 1994). The difference between response times in the A30 and

A60 conditions may be due to differences in familiarity with particular stimulus compon-

en ts; this last point is developed in the modelling section of the paper, where the response

time data are considered in greater detail.

W hat is no t clear from this experiment is whether the central resultÐ that is, the

gradient of generalization being sharper under discrim inative than under non-

discrim inative training Ð should be explained in the same way as the analogous result

in rats and pigeons. A ® rst objection might be that, given that no element the subject sees

is equally predictive of the two categories, there is nothing that might be considered as an

incidental stimulus, and therefore no difference between gradients for discrim inative and

non-discrim inative training should be expected. However, to make this objection is to

forget that the experimenter’ s de ® nition of relevant aspects of the stimulus may not

accord with the sub ject’s. Any number of constant factors in the stimulus or its context

may form part of the subject’s category de ® nition in the non-discrim inative condition.

Some exam ples might be the num ber of pictures, their arrangement in a 4 3 3 matrix,

their enclosure in a rectangle, or the position of the stimulus on the screen. In the

discrim inative condition, it would become clear that these elements of the stimulus

representation were incidental. At the level of intuition, readers must judge for them-

selves how likely it is that such factors do in fact form part of the stimulus represen tation

in humans. However, in animal experimentation, the generalization gradient difference is

seen even when there is on ly one unitary conditioned stimulus from the experimenter’ s

point of view (e.g. a pure tone: Jenkins & Harrison, 1960). The incidental stimuli hypo-

thesis permits that the critical non-differentially reinforced aspects of the situation may

not be part of the experimenter’ s de ® nition of the stimulus.

Although the incidental stimuli hypothesis can comfortably exp lain the results of this

experiment, it is not the only credible explanation for the pattern of results found. One

could argue that the different training procedures in the discriminative and non-

discrim inative conditions lead to different decision processes at test. After discrim inative

train ing, one might expect the decision to be relative (``Is this more like an A, or more like

a B? ’ ’ ), whereas after non-discrim inative tran ing it would be absolute (``Is this an A, or

isn’ t it? ’ ’ ). The latter decision requires comparison to some minimum threshold of cat-

egory membersh ip and could lead to a shallower generalization grad ient without the need

to invoke incidental stimuli. To disen tangle these two explanations, one needs a situation

in which the incidental stimulus hypothesis wou ld predict a gradient difference even

though the underlying decision process was the sam e.

One effective manipulation is to include a discriminative training condition where all

exam ples of one category are presen ted before any exam ples of the other category

(blocked training) and compare it to the more standard interm ixed training. If incidental

stimuli are instrumental in causing the difference between discrim inative and non-

discrim inative training, then they shou ld also cause a difference between blocked and

interm ixed discrim inative training. Recall that, under intermixed discriminative training,

the Gluck ± Bower model predicts that all associations from the incidental stimulus to a
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category represen tation tend towards zero. At ® rst sigh t it m ight appear that this is also

true for blocked discriminative training, but it is not. The model is error-correcting and,

as such, is sensitive to the order in which stimuli are presen ted.

This is most easily illustrated by a simpli® ed situation involving two categories, two

perfect predictors and an incidental stimulus, all of equal salience. Assum ing that the ® rst

category presented is represented by + l (although the argument also works if you assume

it is represented by 2 l ) it is clear that, in the ® rst phase of blocked training, the

associative strengths for the perfect predictor of that category and for the incidental

stimulus should rise at the same rate. If learning reaches asymptote, then both strengths

shou ld equal l /2. W hen , in the second phase, the other category (represen ted by 2 l ) is

repeatedly presented, the associative strength for the other perfect predictor w ill tend

toward s 2 l , as will the associative strength for the incidental stimulus. However, at the

beginning of this phase, the associative strength for the incidental stimulus was positive,

and for the perfect predictor it was zero. This means that the latter will end up signi ® c-

antly more negative, and, if learn ing in this phase is also asymptotic, they w ill be 2 Ü l
and 2

3
/4 l , respectively. These resulting associative strengths differ in two ways from

those achieved in the interm ixed condition: The incidental stimulus is somewhat asso-

ciated to the second category presented, and the perfect predictor for the ® rst category

presented is less associated to its category label than the perfect predictor for the second

category is to its. As before, we assume that in a generalization test the similarity of the

perfect predictor components to those seen in training is systematically varied, whereas

sim ilarity of the incidental component to the trained one stays constant or varies unsys-

tematically. Under blocked training, the non-zero strength of the association between the

incidental stimulus and the category node lead s to a bias to respond in favour of the

second category presented. The absence of this bias after intermixed training means that

the model predicts that the gradient of generalization should be shallower under blocked

discrim inative training than under intermixed discrim inative training.

Two important facts about the previous analysis need to be appreciated. First, the

conclusions drawn are not dependent on the total num ber of stimulus elements, or on the

perfect nature of the predictors, or on learning being asymptotic. Second, this model does

not unavoidably predict a gradient difference. If there are no sign i® cant inciden tal stimuli,

then the grad ients would be equal, but one could not then appeal to the same incidental

stimuli to explain the difference between discriminative and non-discrim inative training.

It may be easier to appreciate th is with the aid of a speci® c demonstration, and to this

end the G luck ± Bower model was implemented in a form more directly interpretable from

the perspective of the previous experiment. Brie¯ y, 24 predictive stimulus component

nodes were created , 12 for each category. As in the experiment, 12 predictive components

were present in any category exam ple, each having a 10% chance of being a component

generally predictive of the other category. In addition 12 incidental components were

always active. Each model received 30 different random ly selected examples of each of the

two categories, either blocked or intermixed. W here training was blocked, all Category B

exam ples were presented ® rst. The learning rate param eter ( a ? b ) was set to 0.001. This

was chosen to show that the effect occurs in non-asymptotic conditions, but the speci ® c

value is not critical. F inally, both models were tested (associative strengths frozen) with 10

exam ples of each of the stimuli in the range (12 Category A components, no Category B
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components) to (no Category A components, 12 Category B components). The activation

of each representation was computed by summing the associative strengths to that repres-

en tation for all stimulus components present on that trial. Following G luck and Bower’ s

original paper (Gluck & Bower, 1988), the resultant activation was transformed into a

probab ility with the follow ing equation:

P(A ) = 1/(1 + e
2 k A

) 2

where P(A ) is an index of the probability of choosing category A, k is a scaling constant,

and A is the resu ltant activation. The constant k was set to 12 for th is demonstration.

The ® lled symbols in Figure 4 show the mean simulated probab ility of choosing

Category A, taken over 20 simulation runs. The result of simulations employing no

incidental stimulus components are also presented (hollow symbols) to illustrate that their

removal can lead to a prediction that generalization gradients in the two discrim inative

conditions should be equal. However, their removal logically leads to an inab ility to

explain the difference between discrim inative and non-discrim inative training in these

terms.

EXPERIMENT 2

The second experiment was basically a replication of the ® rst, with the addition of a

blocked d iscrim inative training condition. The basic pred iction was that if a difference

between discriminative and non-discriminative training was again observed and it was to

be explained by the neutralization of incidental stimuli, then a blocked versus interm ixed

difference, in the sam e direction, should also be seen. As the two non-discrim inative

conditions of Experiment 1 did not differ signi ® cantly in their gradients of generalization,

it seemed unnecessary to run both. We decided not to include the A30 cond ition .
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M ethod

The subjects were 67 adults, aged betwen 18 and 40, who were paid for their participation. N one

of the subjects from Experiment 1 was used. About half were tested using the apparatus describ ed in

Experiment 1, the rest on an AK F50 monitor and Acorn A5000 microcomputer in an adjacent

cubicle. (T his com puter system is an older version of the AFK60/RiscPC600 system , and the

prog ram used runs identically on both m achines w ithout modi ® cation.) The stimuli were con-

structed in an identical manner to those used in Experiment 1. T he procedure was identical to

that in Experiment 1. In the new blocked (B30 ® A30) condition, all examples of B were presented

before any exam ples of A.

Results

Key-to-category assignment was checked (in the same way as Experiment 1) for each

subject. This time, some subjects were found to have reversed the assignment they had

been given. Each subject who failed in this way was replaced by another person perform-

ing the same condition with the same key assignment, until there were 10 successful

subjects in each condition’ s counter-balance sub-group (in total, 7 sub jects were

replaced ). A t this point, the coun ter-balance sub-conditions did not differ signi ® cantly

from each other. The signi ® cance level for all analyses is .05.

As seen in F igure 5(a), all conditions showed an orderly generalization gradient; as the

number of B elements increases, the tendency to respond `̀ It’ s an A’ ’ decreases. A m ixed

ANOVA, with one between-subject variable (experimental condition, 3 levels) and one

within-subject variable (B elements, 13 levels), showed that this effect was reliable,

F (12, 684) = 230, as was the d ifference between conditions, F (2 , 57) = 31. Post-hoc Tukey

(HSD) tests revealed that this was due to the A60 cond ition being signi ® cantly different

from the A30/B30 and B30 ® A30 conditions, which did not differ. The Number of B

Elements 3 Experimental Condition interaction was also signi ® cant, F (24, 684) = 6.2.
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From inspection of Figure 5(a), it would appear that the gradients in the A30/B30 and

B30 ® A30 conditions are steeper than in the A60 condition in the range 0 ± 6 B elements

but shallower in the range 6 ± 12 B elements. Before assessing this, both ranges in all

conditions were checked for an overall signi ® cant linear component, in all cases the

relevant F-ratios were F (1, 138) = 25, 86, and 180 for conditions A60, A30/B30 and

B30 ® A30, respectively, in the range 0 ± 6 B elements, and F (1, 138) = 140, 84, and 41 in

the range 6 ± 12 B elements.

Once again, differences in gradient were assessed by obtaining separate regression

lines for each subject and for each of the two ranges. It was found that, in the range

0 ± 6 B elements, the gradients of the lines in the A60 condition, mean = 2 0.02, were

signi ® cantly less negative than the gradients of the lines in the A30/B30 condition, mean

= 2 0.09, t(38) = 5.1, and the B30 ® A30 condition, mean = 2 0.10, t(38) > 10. The A30/

B30 condition did not d iffer from the B30 ® A30 condition signi® cantly, t(38) = 1.1. In

the range 6 ± 12 B elements, the A60 gradients, mean = 2 0.14, were signi ® cantly more

negative than the A30/B30 gradients, mean = 2 0.07, t(38) = 4.30, and the B30 ® A30

gradients, mean = 2 0.04, t(38) > 10. In this segment, the difference between the

B30 ® A30 gradients and the A30/B30 gradien ts just reached signi ® cance, t(38) = 2.2,

with the B30 ® A30 gradients being less negative.

The response times provided useful secondary information. As can be seen from

Figure 5(b), they appear to show a sim ilar pattern to Experiment 1. A mixed ANOVA

revealed that the num ber of B elements had a reliable effect on response time, F(12, 684) =

8.7 , and that this effect differed according to condition, as evidenced by a signi ® cant B

Elements 3 Condition interaction, F (24, 684) = 6.8. To assess any possible trends, the

response times at each test point were recoded for each subject by subtracting their

personal overall mean response time from their mean response time at each test point

(the sam e tranformation as used in Experiment 1). After this transform , the data in the

A60 condition showed a reliable linear trend , F(1, 258) = 160. No reliable linear compo-

nent was detected in the A30/B30 or B30 ® A30 conditions, F (1, 258) = 0.19 and

F (1, 258 ) = 0 .65, respectively. Second-order polynom ial regression led to regression lines

that described a signi ® cant component of response times in conditions A30/B30,

F (2, 257 ) = 14, B30 ® A30, F (2, 257) = 14, and A60, F (2, 257 ) = 79. The quadratic

component was signi ® cant in conditions A30/B30, t(258) = 5.2, and B30 ® A30, t(258) =

5.2 , but not in cond ition A60, t(258) = 0.20.

DISCUSSION

A clear difference in the generalization gradient resulting from discriminative and non-

discrim inative train ing was again seen, and the pattern of choice probabilities and

response times found was very similar to those in the last experiment. The only slight

differences were in the A60 condition response times, where no quadratic component was

seen, and where times seem higher for stimuli containing more than 6 B elements. In fact,

the line looks closer to that found in the A30 condition of Experiment 1. This may have

been due to the subjects in this experiment learning less than those in Experiment 1.

Given the number who forgot the key-to-response assignment, this does not seem entirely

unlikely, but, whatever the explanation, it would be wrong to become too diver ted by it.
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The amount of time a subject had to respond is not set in these experiments, and so

response times could be subject to various uncontrolled in¯ uences (e.g. time pressure

intrinsic to the subject or to experimenter effects).

The critical result is that, although there is a clear difference between discrim inative

and non-discriminative training, the pattern of results in the blocked and interm ixed

conditions is very sim ilar. There is some evidence of a grad ient difference between these

conditions in the range 6 ± 12 B elements, but it is in the opposite direction to that

predicted by the incidental stimuli hypothesis. The gradient o f the line in the blocked

discrim inative condition is shallower than in the intermixed condition in this region,

whereas the non-discrim inative gradient is steeper. The incidental stimulus hypothesis

cannot account for the pattern of results seen in these two experiments.

G ENERAL DISCU SSION

The argument put forward in the remainder of this paper is that the major patterns of

results in the choice probabilities and response times of the two experiments repor ted can

be accounted for by a simple connectionist model. The starting point for this model is the

Rescorla± Wagner theory but the modi® cation used by Gluck and Bower (1988) is not

employed. This is becau se it is incapable of coping with situations where more than two

categories need to be learned. Although this would not be a problem for these two

experiments, it seemed unreasonable to constrain the model in this way. Therefore a

slightly different modi® cation was used, suggested in a footnote in the G luck ± Bower

paper and previously implemented by Shanks (1990). Each category is allocated a separate

node, each node having its own set of links to the stimulus components. If a category label

is present, then l for the appropriate unit is set to 1, otherw ise it is set to 0.

Like the original Gluck ± Bower variant, this modi® cation predicts a difference in

gradients after blocked and m ixed discriminative training in the presence of incidental

stimuli. If this is not completely clear, consider again the simpli® ed situation of one

perfect pred ictor for each category and one incidental stimulus, all of equal salience. In

the ® rst phase of the blocked condition, the perfect pred ictor and the incidental stimu-

lus will become equally associated to the ® rst category. Associations to d ifferent

category representations change independently, so this is also true of the incidental

stimulus and the other perfect predictor in the second phase. However, in the second

phase the absence of the ® rst category is a signi ® cant event, because the incidental

stimulus is associated to it and therefore predicts that it should occur. In the continued

absence of the ® rst category, this association will extinguish. If learning is asymptotic

within both phases of blocked training, then the only non-zero associative strengths are

those between the ® rst category and its perfect predictor, the second category and its

perfect predictor, and the incidental stimulus and the second category Ð all equal to l /2.

W hether or not learning does reach asymptote, the incidental stimulus will be some-

what more associated to the second category presented than to the ® rst, whereas in

interm ixed training th is will not be the case. Performing the same sort of modelling

demonstration as presented in Figure 4 for the Gluck ± Bower varian t requires that

Equation 2 be modi® ed to allow the combination of two activations. The form used

in this demonstration is
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P(A ) = 1/(1 + e
k (B 2 A )

) 3

This equation is a variant of Luce’s constant-ratio rule (Luce, 1959) and is formally

identical to Equation 9 in Hurwitz (1994). It is also in the spirit of Shanks’ derivation of

predictions from his implementation (Shanks, 1991). W ith the same values for a ? b and k

as used previously, this varian t produces exactly the same pattern of results as shown in

Figure 4. Like the Rescorla ± Wagner model and the Gluck ± Bower varian t, this version also

cannot predict the results repor ted here by recourse to the incidental stimuli hypothesis.

The core of the exp lanation offered in this paper for the difference in generalization

gradients follow ing discriminative and non-discriminative training is that the decision

processes underlying categorization following discriminative training are d ifferent from

those follow ing non-discrim inative training. Under d iscrim inative training and the

forced-choice `̀ A or B’ ’ test conditions used in our experiments, it is hypothesized that

the decision is basically relative (`̀ Is this more like an A or more like a B? ’ ’ ). However,

under non-discrim inative training conditions, the decision cannot be relative in the same

way. It can be done, we argue, by comparison to some minimum threshold of category

membership. If this threshold is exceeded, then the subject decides that this is an example

of the given category, otherwise they decide it is not. In our model this threshold is

represented by a unit at the category level with an activation of a certain value not

determ ined by stimulus information.

Any model of this form requires some way of transforming activation at category level

into a prediction about how the subject will respond. Although Equation 3 fu l® ls this

purpose, it is not used here for two reasons: F irst, it seems incongruous to adopt a

connectionist approach and then have to `̀ bolt on’ ’ an additional non-connectionist com-

ponent to exp lain responding in any detail. Second, Equation 3 cannot be easily extended

to explain response times. We argued earlier that some care must be taken in interpreting

this part of our data becau se of the lack of exp licit time pressure. However, the basic

patterns found are reliable, and it would be informative to see whether a simple connec-

tionist system could reproduce them.

The function of a decision rule such as that expressed in Equations 2 and 3 is to

compare the activation of two or more representations and make a prediction about which

one is more likely to cause its appropriate response to be made. In other words, it makes a

prediction about which of the represen tations is more likely to w in. Put in these terms, it

can be seen that the sam e function could potentially be performed by a competitive

network (Houghton, 1990; Rumelhart & Z ipser, 1986). Lacou ture & M arley (1991)

showed that some absolute identi® cation response time data could be predicted from

the number of cycles a network of simple integrators with thresholds (similar to cascade

units, M cClelland , 1979) took to reach a decision. S im ilarly, we considered that the

number of cycles in which a winner-take-all network came to a decision m ight be an

index of response time in our categorization experiments.

Speci® cation of the M odel

The complete model is illustrated in F igure 6. Each symbol in a stimulus is represented

by a single stimulus element node, which is assumed to be on if the symbol is present and

off otherwise. Each category is represented by a single category node. These two sets of
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nodes are connected by links of modi® able strength, the modi® cation being governed by

the Rescorla ± Wagner rule (Equation 1). The a b argument of this rule is replaced by a

single constant a , as no assumption is made about the effect of stimulus element and

category salience on the rate of learning. The asymptote of learning for links to a category

node ( l ) is 1 if a category label is present and 0 otherwise. The strength of all modi® able

links starts at zero, and it is assumed that they change in the training phase of the

experiments, bu t not in the test phase. The activation of a category representation is

determ ined by the sum of the weights of links from activated stimulus units to that node.

At the category level of representation there is also a threshold unit whose activation (T)

is determ ined not by the activation of stimulus elements but by the type of decision being

made.

The activations from the category level nodes are passed to a winner-take-all module

via ® x ed links. W ithin this module, all nodes are self-exciting and mutually inhibitory.

The activation of any unit in this system is calculated from its activation on the last cycle

and the inputs com ing to it. The activation of a unit on cycle c is

A c 2 1 + En
A c = 4

1 + En + D
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if n > 0, and

A c 2 1 + En
A c = 5

1 2 En + D

otherwise, where n is the total input to the unit and E and D are constants representing

the rate of excitation and decay with in the node. These equations are adapted from the

M cClelland ± Rumelhart (1985) model. The values of E and D are non-critical as long as

E > D. In the simulations performed in this paper, it is assumed that there are only two

units with non-zero activation for any par ticular decision (the threshold unit is assumed

to have zero activation on ` À vs. B’ ’ decisions). Given this, n for either node can be

de ® ned as:

n = e + A c 2 1 2 b 6

where e is the activation of the category node to which the winner-take-all (W TA) node is

connected and b is the activation of the other W TA node. The activation of these nodes is

passed on to the part of the system responsible for producing a response. This part is not

explicitly modelled ; instead, it is assumed that a node cau ses its appropriate response to

be produced when its activation exceeds that of its competitor by a certain amount (d ).

The system as described so far is entirely noise-free, but it seems reasonable to assume

that noise would in fact be present in any neuron-like system . Noise is represented here as

a random component, added at the w inner-take-all stage, which has a mean of zero, a

maximum level N , and a rectangular distribution. Hence e (the input from a category

node) is de ® ned as:

e = a + rnd(N ) ? rnd(1, 2 1) 1 > e > 0 7

where a is the activation of the appropriate category node, rnd(N ) is a random ly deter-

mined real num ber from 0 to N , and rnd(1, 2 1) is either 1 or 2 1, random ly selected.

Noise is assumed to be continuously varying, wh ich is implemented here by recalculating

e each cycle. Although in this instantiation noise is added only at the winner-take-all stage,

this is for computational simplicity. The underlying assumption is that every stage of

processing contribu tes some noise, and the more stages a signal has to go through, the

more noise it will acquire. Hence, at the winner-take-all level, the signal from the thresh-

old unit should be less noisy than that from the category nodes. This is because the

category signal is the result of processing in many systems (includ ing perceptual ones not

represented in th is model), whereas the threshold activation is an intrinsically produced

signal, created at the category node level and passed straight to the winner-take-all

system. Variations in noise are hypothesized to have an effect on the response-producing

system. Under conditions of randomly ¯ uctuating noise, the winner-take-all system acts

like a signal ampli® er Ð over time it ampli® es the difference between signals and so

reduces the effect of noise on the decision made. As overall noise increases, the signal-

to-noise ratio can be maintained by increasing the activation difference threshold (d ), and
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we hypothesize that the response system does this. The implementation used here is to

make d a function of the noise of competing units. W here there are two competing units,

d = s? (N 1 + N 2 ) 8

and s is a constant.

Before the model can be applied to the experiments reported in this paper, one further

point must be made. This model assumes that the time from stimulus onset to the w inner-

take-all system being presented with the appropriate activations is constan t. This simpli-

® cation suf® ces, for our purposes, when the symbols presented under test are fam iliar.

However, if the stimulus contains one or more symbols not seen in training, we assume

that this involves an extra processing cost and so increases response time. For the follow-

ing demonstrations, this cost is implemented by adding a constant, su , to d in situations

where at least one of the elements in the presented stimulus was not seen in training. This

is not intended to be a statement that the locus of the effect is necessarily in the response

section of the system; it is simply an initial and imperfect instantiation of the principle

that unfamiliar stimulus components will increase response time.

Simulation

The derivation of predictions from this model was performed in two stages. First, 1,000

simulated subjects were run on each of the cond itions in each of the two experiments to

derive the mean activation of the category units at each poin t in the range (12 A elements,

0 B elements) to (0 A elements, 12 B elements). Each of these sets of mean activations was

then presented 1,000 times to the winner-take-all system , and the choice probability

prediction derived from the num ber of times the Category A node won. The competition

was always simulated as being between two activationsÐ the Category A activation and

either the Category B activation or the threshold activation. The index of response time

was simply the mean num ber of cycles taken to reach a decision. The effect of stimuli with

one or more elements unseen in training was simulated by estimating, in a M onte Carlo

simulation, how many times such an event would occur at a given position on the range

and including this many runs, within the 1,000 performed, with d + su as the threshold for

a decision. The reason for the two-stage derivation was procedural: it allowed a much

easier assessment of the in¯ uence of speci ® c variables.

The two experiments were simulated separately, but most of the model’s parameters

were held constant. Fo r some this was because they were considered to be basic constants

of the system (E , D, s, and NT, the noise parameter for the threshold unit), for others

because they arose somewhat from the nature of the stimuli presented (su and N C , the

noise parameter for category nodes). They were set as follows: E = 0.2, D = 0.1, s = 0.2,

NT = 0.2, N C = 1.1, su = 0.458. Following our hypothesis that subjects in Experiment 2

learned less than did subjects in Experiment 1, we allowed a to vary across experiments.

T was also allowed to vary, as it was hypothesized that the activation of the threshold unit

might be dynam ically altered by the system as a function of the amount of learn ing. For

Experiment 1, a = 0.0075, T = 0.43, and for Experiment 2 , a = 0.0025, T = 0.38. W ith

the exception of the values for E and D, which were arbitrarily decided upon, the settings
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for all param eters were chosen to allow a good approximation to the data. This was not

done via any formal error m inim ization process, and hence the output presented is

unlikely to be the best ® t possible. Discovering the best- ® t was not the purpose of these

simulations, it was simply to demonstrate that the patterns in the data could be repro-

duced in some detail.

The results of the simulations are shown in F igures 7 and 8. Turning ® rst to the choice

probab ilities in the simulation of Experiment 1 Ð shown in F igure 7(a) Ð the overall

pattern is highly sim ilar to that seen in the data. The model correctly predicts that the

gradient of the lines in the A30 and A60 conditions should be shallower than that in the

A30/B30 cond ition in the range 0 ± 6 B elements, and steeper in the range 6 ± 12 B ele-

ments. To understand why this pred iction is made, note that the non-discriminative lines

start and end at approximately the same points as the d iscrim inative lines, even though

there is a bigger difference at these points between the activation of the A unit and the B

unit than between the A unit and the thresho ld unit. Th is should lead to more certain

decisions (closer to 1 or 0) in the discrim inative condition at these points. The difference

is compensated for by the lower noise associated with the threshold signal. Given the

same start and end points, the gradient differences occur because in mid-range the

difference between the threshold and the A unit activation is larger than the difference

between the A and B unit activations. The model also correctly predicts that the A30 and

A60 conditions are very sim ilar, and this is due to the fact that after 30 training episodes

the connection weights to the A category representation are near asymptote, and therefore

the presentation of another 30 items of the same form has little effect.

Turning to the predictions of response times shown in Figure 7(b), care needs to be

taken to ensure that the output is not over-interpreted. As already stated, the experi-

mental procedures used here were not ideal for producing ``clean’ ’ response times.

Another, equally important, concern is that of determ ining the appropriate conversion

from cycles to response time in seconds. Given these concerns, on ly the overall patterns

will be discussed in any detail. F irst note that the model correctly predicts an inverted-U

shaped trend in response times for the A30/B30 condition, approximately centred at the
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mid-point. This trend arises becau se the closer two activations are, the longer, on average,

it w ill take the system to amplify the difference above a set threshold. In the discrim-

inative cond ition , the competing activations will be most similar when the am ount of

evidence for the items being in the two categories is equal, which, for th is model, will be

at 6 B elements. It would seem by this reasoning that the non-discriminative conditions

shou ld also show a similar trend. The same process is, in fact, responsible for the poly-

nomial component of the A30 and A60 pred ictions, but the maximum response time is not

centred at 6 B elements because this is not where the threshold and category activations are

most sim ilar. The predictions for the non-discriminative conditions, instead, correctly

show a linearly increasing component, because the point of maximally similar activations

is at abou t 9 B elements, and because the lower noise of the threshold unit leads to a lower

response threshold, which attenuates the curvilinear component of the lines. The A30

curve is correctly shown as being generally above the A60 curve because of the effect of

stimulus components unseen in training. S timuli ful® lling this criterion are more common

as the num ber of B elements increases, but their occurrence is so generally rare after 60

presentations that it has little effect on the A60 curve. Both the non-discrim inative

conditions are predicted to have some curvilinear component to their response times.

Although it is true that no signi ® cant curvilinear component was found in the A30

condition, the trends in the means are not at odds with such a prediction.

The model can also correctly predict most of the patterns seen in the choice prob-

abilities of Experiment 2 Ð the predictions are shown in F igure 8(a). The most critical

result is that a clear difference in gradien t between discriminative and non-discrim inative

conditions can be seen in the absence of a similar difference between blocked and m ixed

conditions. The predictions for the non-discriminative condition differ from those for the

discrim inative conditions for the same reasons as they do in the predictions for Experi-

ment 1, although the lower learning rate means that the level of noise at the threshold unit

is less critical. The slight over-prediction of the probability of responding ` À’ ’ in the A60

condition with stimuli containing more than 8 B elements is the by-product of the slightly

lower level of T in this simulation. However, the lower value of T does allow the pred ic-
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tion that the line will be generally above the lines in the discriminative conditions for

stimuli containing 2 or more B elements.

The correct prediction that mixed and blocked discrim inative training conditions are

very similar is due to the absence of any incidental stimulus element representations.

The small differences that remain are due to the probabilistic nature of the stimuli.

Following the sam e argument as previously made for incidental stimuli, elements gen-

erally predictive of Category B that occur in examples of Category A in the second

stage of blocked training end up somewhat associated to the Category A node. Also,

their association to the Category B node decreases. The relative rarity with which any

one symbol appears in a category that it is not predictive of, and the fairly low learning

rate used in the modelling of both these experiments, serves to m inimize the effect of

this. One problem is that the differences that do remain may be in the wrong direction.

The analysis of Experiment 2 suggests that, in the range 6 ± 12 B elements, the gradient

of the line in the blocked condition is signi® cantly less negative than that in the

interm ixed condition. This is a pattern of results not predicted by any theory consid-

ered in this paper and wou ld, if found to be reliable in other experiments, also pose a

challenge for th is model.

Finally, the model does well at predicting the pattern of response times in Experi-

ment 2Ð predictions are shown in F igure 8(b). Both d iscrim inative conditions are

correctly predicted to have a marked inverted-U trend, approximately centred on the

mid-point. The reason for the shape and position of the trends is the same as it is in

the predictions for Experiment 1. As seen in the data, the pattern for the blocked

condition is very similar to that in the m ixed condition, and this is as a result of the

absence of incidental stimulus component representations. The slight difference in

position is due to the order effects for the associations of elements generally unpred ict-

ive of the second category to be trained (detailed in the discussion of the choice

probab ility predictions). The non-discrim inative condition shows a generally increasing

component because the point of maximally sim ilar activations is at approximately 9 B

elements rather than 6 and because the curvilinear component is attenuated by the

lower decision threshold cau sed by the lower noise of the threshold unit. The lower

noise and the level of activation of the threshold are also the reason that response times

for the non-discriminative condition are initia lly lower than for the discrim inative

conditions. Stimulus elements unseen in training are relatively rare in this condition

and therefore have little effect.

SUM M ARY AND CONCLUSIONS

W hen subjects acquire a novel category of the sort employed in th is paper, an orderly

gradient of generalization is seen around the category locus. If the category training is

discrim inative (involving two categories), then the gradien t of generalization is sharper

than if the category training is non-discrim inative (involving one category). Any explana-

tion based on incidental stimuli seems unlikely because a difference between m ixed and

blocked discrim inative training is not seen. As far as we know, it remains an unanswered

question whether sim ilar evidence can also be found against incidental stimuli explana-

tions of the results from rats and pigeons.
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A simple connectionist model, based on a combination of the Rescorla± Wagner

learning algorithm and a competitive network, has the ability to predict most of the

critical patterns in choice probabilities and response times found in our two experi-

ments. The central assumption underlying the model’s success is that the decision

process after discriminative training can be different from that after non-discrim inative

train ing. W hen only one relevant category is known about, subjects make predictions

about category membership by comparison to a threshold of membership. W hen the

decision being asked for is a forced choice between two or more categories that have

been learned, th is can be done by comparison of the relative levels of activation at the

category nodes. Although in our experiments the stimuli used were composed of separ-

able elements, the model we give could potentially be extended to stimuli with con-

tinuous dimensions using the stimulus coding system suggested by Shanks & Gluck

(1994).

Other models, such as decision-bound theory (Ashby et al., 1994) or the Generalized

Context M odel (Nosofsky, 1986), may also be able to predict the pattern of results seen in

these experiments. However, further development wou ld be required before they could be

applied to both the type of stimulus and experimental manipulation used here such that

they could predict both the choice probabilities and the response times found. If this were

done, then it may, at that point, be possible to derive divergen t predictions that would

allow them to be distinguished. Our model represents a ® rst attempt to describe, in

connectionist terms, the basic patterns of results found in our data, and to a large extent

it is successful. The result in Experiment 2 that, in the range 6 ± 12 B elements, the

blocked d iscrim inative gradient is shallower than the interm ixed discriminative gradient

is not predicted by our model. If it proves to be replicable, then some modi® cations may

be needed.
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