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Figure 1: Architecture of the ALCOVE model (Kruschke, 1992). The gray quadrilat-
eral is a three-dimensional depiction of a two-dimensional plane, representing a psy-
chological stimulus space. Points h1, h2, and h3 represent the location of radial-basis
(“exemplar”) units within that space. Point x represents the presented stimulus. The
lettered circles are category representations, and the arrows connecting to them are
variable-strength connection weights from the radial-basis units. α1 and α2 represent
the attention allocated to each of the two dimensions of the space; the arrows beside
these α illustrate that dimensional allocation acts to stretch and squash psychological
space in ALCOVE. Image author: Andy J. Wills. CC BY 4.0.

Figure 1 summarizes the architecture of the ALCOVE model (Kruschke,
1992). ALCOVE is a connectionist model that assumes stimuli are represented
as points in a multidimensional psychological stimulus space (Figure 2A). Thus,
each stimulus is represented by a vector, which we will denote here as x. For
example, for stimuli varying in size and angle, one might write x =

(
0.4 0.5

)
,

where the two values represent the psychological size and angle of the presented
stimulus.

Presentation of a stimulus leads to the activation of radial-basis nodes (Ch-
eney, 1966). Radial-basis nodes, like stimulus representations, can be consid-
ered as points in stimulus space (Figure 1). In virtually all applications of
ALCOVE there is exactly one radial-basis node for each unique training stim-
ulus. Although these radial-basis nodes are often called “exemplar” nodes, this
description is something of a misnomer as, in most applications, all the nodes
exist before training begins. It is perhaps better to think of these radial-basis
nodes as a simplification of the abstract concept behind ALCOVE, which is
that there are radial-basis nodes randomly scattered across stimulus space (the
“COVEring map” of ALCOVE).

However one prefers to think about it, the architecture of the radial-basis
layer of ALCOVE is fully specified by the matrix h, which has the same number
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Figure 2: A. Representing the similarity structure of stimuli 1, 2, and 3 in a two-
dimensional geometric space; in this example, the dimensions of this space are readily
interpretable as size and angle. B. Euclidean distance (distance2 = x2 + y2). C.
City-block distance (distance = x+y). D. An exponential decay relationship between
similarity and distance in psychological space. Reproduced from “On the Adequacy of
Current Empirical Evaluations of Formal Models of Categorization” by A.J. Wills &
E.M. Pothos, 2012, Psychological Bulletin, 138, 102–125. Copyright 2012 by American
Psychological Association.

of columns as there are radial-basis units (j columns), and the same number of
rows (i rows) as there are psychological stimulus dimensions. For example, in
a simple size-angle experiment with four stimuli, the architecture of the radial-
basis layer might be described as

h =

(
0.4 0.8 0.8 0.4
0.4 0.4 0.8 0.8

)
where each column represents the location of one training exemplar in stim-

ulus space.
ALCOVE computes the activations of each of the radial basis nodes with

the following equation:

ahj = exp[−c(
∑
i

αi|hji − xi|r)q/r] (1)

This equation specifies that the activation of each radial-basis node is a
decreasing function of its distance from the presented stimulus. Where r = 2,
that distance is Euclidean (Figure 2B); where r = 1, the distance is city-block
(Figure 2C). Euclidean distance is typically used for integral stimuli, city-block
for separable stimuli (see Garner, 1976). Where q = 1, the decreasing function
is exponential (Figure 2D); where q = 2, it is Gaussian. Exponential decay
is typically used (Shepard, 1987); occasionally Gaussian decay is used where
stimuli are highly confusable (Ennis, 1988).

Stimulus space can be uniformly contracted or expanded using c (see Figure
3C). c is largely treated as an arbitrarily variable parameter (Wills & Pothos,
2012), although psychologically it is intended to represent cognitive discrim-
inability or memorability of stimuli, so if information about this could be de-
rived independently for a set of stimuli then it would constrain model fitting
somewhat (minimally, c would need to be a non-decreasing function of discrim-
inability/memorability). In related models, application to amnesic data takes
this form (e.g. Nosofsky & Zaki, 1998).

In Equation 1, αi represents dimensional attention on dimension i. Dimen-
sional attention acts as a multiplier to distance, stretching psychological space
uniformly across one axis (see Figure 3B). The model is typically initialised
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Figure 3: A. Geometric representation of two categories, each of four stimuli (category
membership denoted by color of dot). B. Stretching along the x axis and compres-
sion along the y axis, thereby increasing within-category similarity and decreasing
between-category similarity. C. Overall expansion of psychological similarity space.
Reproduced from “On the Adequacy of Current Empirical Evaluations of Formal Mod-
els of Categorization” by A.J. Wills & E.M. Pothos, 2012, Psychological Bulletin, 138,
102–125. Copyright 2012 by American Psychological Association.

with equal attention to all dimensions, conventionally summing to unity, e.g.
α =

(
0.5 0.5

)
.

The activation process represented by Equation 1 results in a vector of radial-
basis node activations, e.g. ah =

(
0.4 0.8 0.4 0.8

)
. Radial-basis node acti-

vation propagates forward to a set of output (category) nodes, which then have
activation ao. There is one output node for each category, and each radial-basis
node has one variable weight connection to each output node. The weight-state
of the model is thus a matrix of the following form:

w =

(
0 0 0 0
0 0 0 0

)
which has k rows (one for each ouput node) and j columns (one for each

hidden node). Activation of the output nodes is calculated with the standard
connectionist equation

aok =
∑
j

wkja
h
j (2)

The forward propagation of activation ends with a standard exponential
ratio rule to convert activation to response probability

P (K) = exp(φaoK)/
∑
k

exp(φok) (3)

where φ is a non-negative response-scaling parameter. Low values of φ lead
to approximately probability-matching behavior (category selection probability
is proportional to the ratio of output node activations). High values of φ lead
to approximately winner-take-all behavior (the category with the highest acti-
vation is always selected). We note in passing that this exponential ratio rule
is probably a poor model of categorical decisions (Wills et al., 2000).

In ALCOVE, learning is driven by “teacher” (t) values. The presence of
a category label is represented by a teacher signal of 1; absence of a category
label is typically represented by -1. The teacher is typically considered to be
“humble”. This means that if the output activation is more extreme than the
+1/-1 teaching value, then the ouput activation is used as the teaching signal.

Learning of connection weights from radial-basis nodes to output nodes uses
a standard summed-error term equation1

1See Le Pelley (2004) for a discussion of summed- and separate- error term equations.
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∆wkj = λw(tk − aok)ahj (4)

where λw is the associative learning-rate parameter, which can range from
0 to 1. This equation acts to change connection weights in the direction that
most rapidly reduces error.

Attentional weights are also learned. This is achieved by the backpropaga-
tion of error (Rumelhart et al., 1986; Werbos, 1974) to the radial-basis nodes in
the standard manner:

bj = ahj
∑
k

(tk − aok)wkj (5)

This back-propagated error is then used to change the attentional weight for
each dimension:

∆αi = −λα
∑
j

bjc|hji − xi| (6)

where λα is the attention learning-rate parameter, which again can range
from zero to one. Implementations of ALCOVE constrain attentional weights
to be non-negative. ALCOVE’s attentional learning system acts to stretch and
squash psychological stimulus space (Figure 3B) in the directions that most
rapidly reduce error.
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